Chapter 4 HW I Solution

Problem 4.1. Let points \(A, B, C, D \) be the four “corners” of the four-bar linkage, as shown in Figure 1. Express the position of either end of link 2 two ways — the two scalar constraint equations will result. For example

\[
\begin{align*}
\mathbf{r}_B &= L_1 c_1 \mathbf{i} + L_1 s_1 \mathbf{j} \\
\mathbf{r}_C &= \mathbf{r}_B + L_2 c_2 \mathbf{i} + L_2 s_2 \mathbf{j} \\
\mathbf{r}_C &= L_4 \mathbf{i} + L_3 c_3 \mathbf{i} + L_3 s_3 \mathbf{j}
\end{align*}
\]

Equate both expressions for \(\mathbf{r}_C \) and resolve into \(i \) and \(j \) components:

\[
\begin{align*}
L_1 c_1 + L_2 c_2 &= L_3 c_3 + L_4 \\
L_1 s_1 + L_2 s_2 &= L_3 s_3
\end{align*}
\]

Thus the two constraint equations are:

\[
\begin{align*}
L_1 c_1 + L_2 c_2 - L_3 c_3 - L_4 &= 0 \\
L_1 s_1 + L_2 s_2 - L_3 s_3 &= 0
\end{align*}
\]

Problem 4.7. The (fixed) \(Z \) axis is given (consider it part of fixed frame \(A \)). I attached a moving frame \(B \) to the arm, as shown in Figure 2. Use the relative velocity equation, with everything expressed in frame \(B \) (easier). We have

\[
\mathbf{v}_P = \mathbf{v}_B + \mathbf{\omega}_B \times \mathbf{r}_P + \mathbf{\omega}_B \times \mathbf{v}_P
\]

where the terms in (8) are

\[
\begin{align*}
\mathbf{v}_B &= \dot{\phi} \mathbf{b}_2 \times L_1 \mathbf{b}_1 = -L_1 \dot{\phi} \mathbf{b}_3 \\
\mathbf{\omega}_B \times \mathbf{r}_P &= \dot{\phi} \mathbf{b}_2 \times L_2 (s\theta \mathbf{b}_1 - c\theta \mathbf{b}_2) = -L_2 \dot{\phi} s\theta \mathbf{b}_3 \\
\mathbf{\omega}_B \times \mathbf{v}_P &= \dot{\theta} \mathbf{b}_3 \times (s\theta \mathbf{b}_1 - c\theta \mathbf{b}_2) = L_2 \dot{\theta} c\theta \mathbf{b}_1 + L_2 \dot{\theta} s\theta \mathbf{b}_2
\end{align*}
\]

Thus the velocity of point \(P \) is

\[
\mathbf{v}_P = L_2 \dot{\theta} c\theta \mathbf{b}_1 + L_2 \dot{\theta} s\theta \mathbf{b}_2 - (L_1 \dot{\phi} + L_2 \dot{\phi} s\theta \mathbf{b}_3)
\]

The virtual displacement comes directly from the velocity:

\[
\mathbf{\delta r}_P = L_2 \dot{\theta} c\theta \mathbf{b}_1 + L_2 \dot{\theta} s\theta \mathbf{b}_2 - (L_1 + L_2 s\theta) \dot{\phi} \mathbf{b}_3
\]

Problem 4.8. Attach a fixed frame \(A \) at point \(O \), aligned as shown. Let \(\phi \) be the angle of link 2 from horizontal.
(a) Velocity Method. Using the “two points on a rigid body” method, the velocity of point \(P \) is

\[
\mathbf{v}_P = \mathbf{v}_B + \omega_2 \times \mathbf{r}_{P/B}
\]

where

\[
\mathbf{v}_B = \omega_1 \times \mathbf{r}_{B/O} = \dot{\theta} \mathbf{a}_3 \times L_1 (c\theta \mathbf{a}_1 + s\theta \mathbf{a}_2) = -L_1 \dot{\theta} s\theta \mathbf{a}_1 + L_1 \dot{\theta} c\theta \mathbf{a}_2
\]

The position vector of point \(P \) relative to point \(B \) is

\[
\mathbf{r}_{P/B} = L_2 c\phi \mathbf{a}_1 - L_2 s\phi \mathbf{a}_2
\]

Thus we have

\[
\mathbf{v}_P = \mathbf{v}_B + (-\dot{\phi} \mathbf{a}_3) \times L_2 (c\phi \mathbf{a}_1 - s\phi \mathbf{a}_2) = \mathbf{v}_B - L_2 \dot{\phi} s\phi \mathbf{a}_1 - L_2 \dot{\phi} c\phi \mathbf{a}_2
\]

Evaluating (17) and noting that the velocity of \(P \) must be along the \(\mathbf{a}_1 \) direction yields

\[
\mathbf{v}_P = -L_1 \dot{\theta} s\theta + L_2 \dot{\phi} s\phi \mathbf{a}_1 + (L_1 \dot{\theta} c\theta - L_2 \dot{\phi} c\phi) \mathbf{a}_2 = v_P \mathbf{a}_1
\]

Since the \(\mathbf{a}_2 \) component of (18) must be zero, we have

\[
L_1 \dot{\theta} c\theta = L_2 \dot{\phi} c\phi
\]

Solving for \(\dot{\phi} \) from (19) and substituting, we obtain the velocity of \(P \) as

\[
\mathbf{v}_P = -L_1 \dot{\theta} (\sin \theta + \cos \theta \tan \phi) \mathbf{a}_1
\]

The virtual displacement comes from the velocity, and is

\[
\delta \mathbf{r}_p = -L_1 (\sin \theta + \cos \theta \tan \phi) \delta \theta \mathbf{a}_1
\]

where (using trigonometry) it can be shown that

\[
\tan \phi = \frac{L_1 \sin \theta}{\sqrt{L_2^2 - L_1^2 \sin^2 \theta}}
\]

(b) Analytical Method. Here we find the position \(\mathbf{r}_P = \mathbf{r}_B + \mathbf{r}_{P/B} \):

\[
\mathbf{r}_P = (L_1 c\theta + L_2 c\phi) \mathbf{a}_1 + (L_1 s\theta - L_2 s\phi) \mathbf{a}_2
\]

Since the \(\mathbf{a}_2 \) component must be zero, we get

\[
L_1 s\theta = L_2 s\phi
\]

which is just the law of sines! The \(\mathbf{a}_1 \) component yields

\[
\mathbf{r}_P = (L_1 c\theta + L_2 c\phi) \mathbf{a}_1
\]

Taking the variation of (25) gives

\[
\delta \mathbf{r}_P = \frac{\partial \mathbf{r}_P}{\partial \theta} \delta \theta + \frac{\partial \mathbf{r}_P}{\partial \phi} \delta \phi = (-L_1 s\theta \mathbf{a}_1 - L_2 s\phi \mathbf{a}_2)
\]

But taking the variation of (24) yields

\[
L_1 c\theta \delta \theta = L_2 c\phi \delta \phi \quad \Rightarrow \quad \delta \phi = \frac{L_1 c\theta}{L_2 c\phi} \delta \phi
\]

Substituting (27) into (26) yields the same result as before (and perhaps with less work!),

\[
\delta \mathbf{r}_P = -L_1 (\sin \theta + \cos \theta \tan \phi) \delta \theta \mathbf{a}_1
\]
Problem 4.11. Here you already have the virtual displacement δr_p from Problem 4.8, this is needed to find the virtual work done by nonconservative force F. The generalized forces associated with the gravitational forces may be found using virtual work or the potential function V (that’s what I will use).

Potential Function. The c.g. of both links rises the same amount, so

$$V = \frac{1}{2} (m_1 + m_2) g L_1 \sin \theta$$

(29)

Nonconservative force. The virtual work done by F is

$$F \mathbf{a}_1 \cdot \delta r_p = - F L_1 (\sin \theta + \cos \theta \tan \phi) \delta \theta$$

(30)

Thus the total generalized force is

$$Q_\theta = - \frac{\partial V}{\partial \theta} + Q_{\theta nc} = -\frac{1}{2} (m_1 + m_2) g L_1 \cos \theta - F L_1 (\sin \theta + \cos \theta \tan \phi)$$

(31)

where again

$$\tan \phi = \frac{L_1 \sin \theta}{\sqrt{L_2^2 - L_1^2 \sin^2 \theta}}$$

Problem 4.13. First do the conservative (gravitational) forces; the potential function is

$$V = 2 mg L^2 \sin \theta + mg[(L - R\phi) \sin \theta + R \cos \theta]$$

(32)

$$= 2 mg L \sin \theta + mg(R \cos \theta - \phi \sin \theta)$$

(33)

The conservative generalized forces are

$$Q_\theta c = - \frac{\partial V}{\partial \theta} = - 2 mg L \cos \theta + mg(R \sin \theta + \phi \cos \theta)$$

(34)

$$Q_\phi c = - \frac{\partial V}{\partial \phi} = mg R \sin \theta$$

(35)

There are two nonconservative forces, force F and moment M. Force F is applied at point G, so we can use the virtual displacement δr_G found in Example 4.5, (equation [e] p. 234). Moment M is applied around point B.

The nonconservative virtual work is given by

$$\delta W_{nc} = F(\cos \psi i + \sin \psi j) \cdot [- R(\delta \phi + \delta \theta) i + (L - R\phi) \delta \theta j] + M k \cdot \delta k$$

(36)

$$= - FR \cos \psi (\delta \phi + \delta \theta) + F \sin \psi (L - R\phi) \delta \theta + M \delta \theta$$

(37)

Thus

$$Q_{\theta nc} = - FR \cos \psi + F \sin \psi (L - R\phi) + M$$

(38)

$$Q_{\phi nc} = - FR \cos \psi$$

(39)

The total generalized forces are:

$$Q_\theta = - FR \cos \psi + F \sin \psi (L - R\phi) + M - 2 mg L \cos \theta + mg R (\sin \theta + \phi \cos \theta)$$

(40)

$$Q_\phi = - FR \cos \psi + mg R \sin \theta$$

(41)

Problem 4.14. It is useful to define angle ϕ as shown in Figure 4 on the next page. All forces in this problem are conservative, and θ is the single generalized coordinate, so we can find static equilibrium by setting $\partial V/\partial \theta = 0$, where V is the system potential function.

Let x be the elongation of the spring—then the potential function V is (note that the c.g. of both links moves down the same amount):

$$V = - \left(m + \frac{m}{2} \right) g \frac{L}{2} \sin \theta + \frac{1}{2} k x^2$$

(42)

$$= - \frac{3}{4} mg L \sin \theta + \frac{1}{2} k x^2$$

(43)
Spring elongation \(x\) is given by
\[
x = \frac{3}{2} L - L \cos \theta - \frac{L}{2} \cos \phi \tag{44}
\]
\[
= L(1 - \cos \theta) + \frac{L}{2} (1 - \cos \phi) \tag{45}
\]

At equilibrium, using the chain rule on the spring potential function, we have
\[
\frac{\partial V}{\partial \theta} = -\frac{3}{4} mgL \cos \theta + kx \frac{\partial x}{\partial \theta} = 0 \tag{46}
\]

where
\[
\frac{\partial x}{\partial \theta} = L \sin \theta + \frac{L}{2} \sin \phi \frac{\partial \phi}{\partial \theta} \tag{47}
\]

However, \(\phi\) and \(\theta\) can be related using the Law of Sines, and using the differential we can find \(\partial \phi / \partial \theta\) needed in (47):
\[
2 \sin \theta = \sin \phi \implies 2 \cos \theta \, d\theta = \cos \phi \, d\phi \implies \frac{\partial \phi}{\partial \theta} = \frac{d\phi}{d\theta} = 2 \cos \theta \cos \phi \tag{48}
\]

Substituting (48) and (47) into (46), canceling the \(L\), and after a little trigonometric reduction we get the equilibrium condition as
\[
\frac{3}{4} mgL \cos \theta - kxL \left[\sin \theta + \cos \theta \tan \phi\right] = 0 \tag{49}
\]

where \(\phi\) can be related to \(\theta\) using (48) and \(x\) can be related to \(\theta\) and \(\phi\) using (45).

Extra Credit. With \(m = 1\) kg, \(L = 1\) m, \(g = 9.81\) m/s\(^2\), the MATLAB `fzero` function can be used to find the numerical equilibrium solution. The M-file below is stored as `prob14.m`.

```matlab
function f = prob14(theta)

% This function computes the dV/dtheta function for Problem 4.14. We have
% to calculate 'phi' and 'x' since they are used in the function.

m = 1; % mass in kg
L = 1; % length in m
g = 9.81; % gravitational constant in m/s^2
k = 100; % spring constant in N/m

phi = asin(2*sin(theta)); % Compute angle 'phi'
x = L*(1-cos(theta))+(L/2)*(1-cos(phi)); % Compute spring elongation
f = -(3/4)*m*g*cos(theta)+k*x*(sin(theta)+cos(theta)*tan(phi)); % Compute function
end
```

Executing the `fzero` function, we get
\[
>> \texttt{fzero('fun',0.1)}
\]
\[
\text{ans} = 0.2440 \quad (13.9809 \text{ degrees})
\]