3.9 A certain two-dimensional incompressible, steady flow is given by the stream function
\[\phi = A \ln r + B\theta, \]
where \(r \) and \(\theta \) are the usual polar coordinates and \(A \) and \(B \) are positive constants.

(a) Find the components of fluid velocity and show that the continuity equation is satisfied.

(b) Sketch a sufficient number of streamlines so that the flow pattern becomes clearly evident.

(c) Find the radial and tangential components of fluid acceleration.

(d) Find the distribution of pressure as a function of \(r \) and \(\theta \) by two methods (i.e., starting with the differential equation of motion directly and using the Bernoulli equation).

3.15 A circular plate is forced down at a steady velocity \(V_0 \) against a flat surface. Frictionless fluid of density \(\rho \) fills the gap \(h \). Assume that \(h \ll R_0 \), the plate radius, and that the radial velocity \(V_r(R, t) \) is constant across the gap.

PROBLEM 3.15

(a) From continuity considerations, obtain a formula for \(V_r(R, t) \) in terms of \(R, V_0 \), and \(h \).

(b) Noting that \(h = h(t) \), evaluate \(\partial V_r / \partial t \).

(c) Substitute into the Bernoulli equation and calculate the pressure distribution, assuming that \(p(R = R_0, t) = 0 \).
\[\psi = A \ln r + B \Theta \]

\[\psi = \frac{\partial \psi}{\partial \Theta} = -\frac{B}{r} \]

\[\frac{B}{r} = -\frac{\partial \psi}{\partial r} = -\frac{A}{r} \]

\[\nabla \cdot \mathbf{v} = -\frac{1}{r} \frac{2}{2r} (r^2 \nabla \psi) + \frac{1}{r} \frac{2}{\Theta} \frac{\partial \psi}{\partial \Theta} \]

\[= -\frac{1}{r} \frac{2}{\Theta} (B) + \frac{1}{r} \frac{2}{\Theta} (-\frac{A}{r}) \]

\[= 0 \quad \text{continuity satisfied} \]

b) lines of constant \(\psi \) (streamlines) require that:

\[A \ln r = \psi - B \Theta \]

\[r = e^{\frac{B}{A}} e^{-\frac{B}{A} \Theta} \]
a) The acceleration of a fluid particle is a Lagrangian quantity:

\[a = \frac{\partial \mathbf{u}}{\partial t} = \frac{\partial \mathbf{u}}{\partial t} + \nabla \cdot \nabla \mathbf{u} \]

The flow is steady, so \(\frac{\partial \mathbf{u}}{\partial t} = 0 \)

\[\nabla \cdot \mathbf{u} = \frac{\partial u_r}{\partial r} = -\frac{B}{r^2} \]

\[\nabla \cdot \mathbf{u} = \frac{\partial u_\theta}{\partial \theta} = \frac{A}{r^2} \]

\[\nabla \cdot \mathbf{u} = \frac{1}{r} \frac{\partial u_r}{\partial \theta} - \frac{u_\theta}{r} = \frac{A}{r^2} \]

\[\nabla \cdot \mathbf{u} = \frac{1}{r} \frac{\partial u_\theta}{\partial \theta} + \frac{u_r}{r} = \frac{B}{r^2} \]

\[\mathbf{u} \cdot \nabla \mathbf{v} = \left(u_r \nabla u_r + u_\theta \nabla u_\theta \right) \hat{r} + \left(u_r \nabla u_\theta + u_\theta \nabla u_r \right) \hat{\theta} \]

\[= \left(-\frac{A^2}{r^2} - \frac{B^2}{r^2} \right) \hat{r} + \left(\frac{AB}{r^2} - \frac{AB}{r^3} \right) \hat{\theta} \]

The tangential component can be found by dotting with the tangent vector. This, in turn, can be found by dividing \(\mathbf{v} \) by its magnitude, \(|\mathbf{v}| \).
\[|\nabla| = \frac{\sqrt{A^2 + B^2}}{r} \]

\[\nabla = \frac{\nabla}{|\nabla|} = \frac{r}{\sqrt{A^2 + B^2}} \left(\frac{B}{r} \delta r - \frac{A}{r} \delta \theta \right) \]

\[= \frac{1}{\sqrt{A^2 + B^2}} \left(B \delta r - A \delta \theta \right) \]

\[a_\theta = (\nabla \cdot \nabla) \cdot \nabla \]

\[= -\left(\frac{A^2 + B^2}{r^2} \right) \cdot \frac{B}{\sqrt{A^2 + B^2}} = -\frac{B \sqrt{B^2 + A^2}}{r^3} \]

\[a_r = \sqrt{|a_\theta|^2} - a_c^2 \]

\[= \left[\left(\frac{B^2 + A^2}{r^3} \right)^2 - \frac{B^2 (B^2 + A^2)}{r^6} \right]^{\frac{1}{2}} \]

\[= \frac{A \sqrt{B^2 + A^2}}{r^3} \quad \text{(towards center of curvature)} \]
a) \[\omega_2 = \frac{\partial^2 \rho}{\partial r^2} + \frac{1}{r} \frac{\partial \rho}{\partial r} + \frac{1}{r^2} \frac{\partial^2 \rho}{\partial \theta^2} \]

\[= -\frac{A}{r^2} + \frac{A}{r^2} + 0 \]

\[= 0 \]

The flow is irrotational - we can use the Bernoulli equation across streamlines!

Say that pressure is known at \(\infty \).
At \(\infty \), \(u_r = 0 \) and \(u_\theta = 0 \)

\[\frac{p_\infty}{\rho} = \left[\frac{u(r, \theta)}{2} \right]^2 + \frac{p}{\rho} \]

\[u(r, \theta) = \frac{\sqrt{a^2 + b^2}}{r} \]

\[p = p_\infty - \frac{(a^2 + b^2)\rho}{2r^2} \]

Now use momentum equations:
Note: the flow is irrotational, therefore inviscid, so we can neglect all the viscous stresses. Also, we can neglect gravity forces.
\(\theta \) - direction:
\[
\frac{\partial p}{\partial \theta} = -\rho \left(\frac{\partial}{\partial \theta} \left(\frac{\partial \theta}{\partial \theta} \right) + \frac{\partial \theta}{\partial \theta} \right)
= -\rho \left(\frac{A^2}{R^3} - \frac{A^2}{R^3} \right) = 0
\]

- no \(\theta \) dependence, as expected from previous results using Bernoulli.

\(r \) - direction:
\[
\frac{\partial p}{\partial r} = -\rho \left(\frac{\partial}{\partial r} \left(\frac{\partial \theta}{\partial r} \right) - \frac{\partial \theta}{\partial \theta} \right)
= -\rho \left(\frac{B^2}{R^3} - \frac{B^2}{R^3} - \frac{A^2}{R^3} \right)
= \rho \frac{A^2}{R^3} (B^2 + A^2)
\]

\(p_{\infty} - p_{\theta \theta} = \int_{r}^{\infty} \frac{\rho}{R^3} (B^2 + A^2) dr \)
\[
= -\frac{1}{2} \rho \left(B^2 + A^2 \right) \left(\frac{1}{R^2} \right) \bigg|_{r}^{\infty}
= \frac{1}{2} \rho \frac{(B^2 + A^2)}{R^2}
\]
\[p_{r,0} = p_0 - \frac{1}{2} \rho \frac{(b^2 + h^2)}{r^2} \]

Same as with Bernoulli.

3.15

Volume enclosed by \(r = \pi r^2 h \)

Rate of change of volume \(\frac{\partial V}{\partial t} = -\pi r^2 \frac{dh}{dt} \)

Fluid loss through circumference \(= 2\pi rhV_r \)

So \(2\pi rhV_r = \pi r^2 V_0 \)

\[V_r = \frac{V_0 r}{2h} \]

\(\frac{\partial V_r}{\partial t} = \frac{\partial V_r}{\partial h} \cdot \frac{\partial h}{\partial t} = -\frac{V_0 r}{2h^2} \cdot V_r = \frac{V_0^2 r}{2h^2} \)
c) B. equation with unsteady term:

\[B(t) = \frac{\partial \rho}{\partial t} \cdot \sum r + \frac{V^2}{2} + \frac{p_r}{p} = \text{constant} \]

\[\frac{V^2}{2} + \frac{p_r}{p} = \frac{V_{\infty}^2}{2} + \frac{P_{\infty}}{p} + \int_{r}^{R_0} \frac{\partial \rho}{\partial t} \cdot dr \]

\[V_{\infty} = \frac{V_0 R_0}{2h} \]

\[P_{\infty} = 0 \]

\[\int_{r}^{R_0} \frac{\partial V}{\partial t} \cdot dr = \int_{r}^{R_0} \frac{V_0^2 - V^2}{2h^2} \cdot dr = \left[\frac{V_0^2 r^2}{4h^2} \right]_{r}^{R_0} \]

\[= \frac{V_0^2 R_0^2}{4h^2} - \frac{V_0^2 r^2}{4h^2} \]

\[\frac{V_0^2 r^2}{8h^2} + \frac{p_r}{p} = \frac{V_0^2 R_0^2}{8h^2} + \frac{V_0^2 R_0^2}{4h^2} - \frac{V_0^2 r^2}{4h^2} \]

\[p_r = \frac{3}{8} \frac{V_0^2}{h^2} (R_0^2 - r^2) \rho \]