t-test comparison of sample means (3.6.4)

Suppose we have two samples: 1, 2 with

\[\bar{x}_1, s_1, n_1 \quad \bar{x}_2, s_2, n_2. \]

Approx. degree of freedom (assuming \(n_1 \neq n_2 \)) has to be calculated thus (3.25a)

\[v = \left(\frac{s_1^2/n_1 + s_2^2/n_2}{\frac{(s_1^2/n_1)^2}{n_1} + \frac{(s_2^2/n_2)^2}{n_2}} \right)^\frac{1}{2} \]

Round off to nearest integer

Then the formula for sample comparison is (3.25)

Test statistic \(t = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{s_1^2/n_1 + s_2^2/n_2}} \)

What does \(t \) mean?

\[t \text{ falls inside } \pm t_{d/2, p} \Rightarrow (3.25a) \]

samples are not significantly different @ chosen level of confidence L
Dealing with Uncertainty. (3.3.3.39)

Some assumptions:

- for statistically independent sources of error ϵ_1 and ϵ_2, the cumulative error for a large # of samples is
 \[\epsilon = \sqrt{\epsilon_1^2 + \epsilon_2^2} \]

- bias and precision error are statistically independent

- uncertainty due to instrument error and due to spread in measurements are statistically independent

Under these assumptions...

Precision uncertainty in x

at a confidence level $c\%$

\[p_x = t \frac{1}{n^2} \frac{S_x}{\sqrt{n}} \] (t-statistics, eqn. 3.24)

Bias uncertainty has to be found by calibration: B_x

Total uncertainty $\ U_x = \sqrt{B_x^2 + p_x^2}$

B_x and p_x must be estimates for same coverage.

B_x, p_x - both for 95% $\Rightarrow \ U_x$ \Rightarrow for 95%

\[N^3 \ (strange \ but \ true) \]

B_x, p_x - 95% coverage : $B_x + p_x = $ uncertainty with 99% coverage.
Propagation of uncertainty (3.10)

1. $y = y(x_1, \ldots, x_n)$, y can be linearized near $(x_1 = 0, \ldots, x_n = 0)$.

2. For each x_i, σ_i is the standard deviation.

$1+2 \Rightarrow$ Standard deviation of y

$$\sigma_y = \sqrt{\left(\frac{\partial y}{\partial x_1} | \sigma_1 \right)^2 + \left(\frac{\partial y}{\partial x_2} | \sigma_2 \right)^2 + \cdots + \left(\frac{\partial y}{\partial x_n} | \sigma_n \right)^2}.$$

This result - exact if y is a linear function.

Uncertainties behave in a way similar to standard deviations.

Let x_1, \ldots, x_n be something we measure.

u_1, \ldots, u_n - corresponding measurement uncertainty.

$y(x_1, \ldots, x_n)$ - function of measured variables.

u_y - its uncertainty.

Let y have a Taylor series expansion:

$$y(x_1 + u_1, x_2 + u_2, \ldots, x_n + u_n) =$$

$$= y(x_1, \ldots, x_n) + u_1 \frac{\partial y}{\partial x_1} |_{x_1, \ldots, x_n} + u_2 \frac{\partial y}{\partial x_2} |_{x_1, \ldots, x_n} + \cdots + u_n \frac{\partial y}{\partial x_n} |_{x_1, \ldots, x_n} + \text{higher-order terms.}$$

High-order terms negligible \Rightarrow y - linearizable in $u_1, \ldots, u_n.
Then
\[u_y = \sqrt{\left(\frac{\partial y}{\partial x_1} u_{1}\right)^2 + \ldots + \left(\frac{\partial y}{\partial x_n} u_n\right)^2}. \]

Example. \(x \) is measured with \(\pm 5\% \) uncertainty. \((1 \leq x \leq 3). \)

What is the uncertainty in
\[y = 0.3x^2 - 0.1x? \]

Solution. \[\frac{\partial y}{\partial x} = 0.3 \cdot 2x - 0.1 = 0.6x - 0.1 \]

\[\frac{d x}{x} = 0.05. \]

\[u_y = \sqrt{\left(\frac{\partial y}{\partial x} u_x\right)^2} = \left| \frac{\partial y}{\partial x} u_x \right|. \]

\[\left| \frac{\partial y}{\partial x} u_x \right| = \left| (0.6x - 0.1) \cdot 0.05x \right| =
\]

\[= \left| 0.03x^2 - 0.005x \right|
\]

\[\left| \frac{\partial y}{\partial x} u_x \right|_{\text{max}} = (0.03 \cdot 3^2 - 0.005 \cdot 3) = 0.255. \]

\[u_y \text{ max} = \pm 0.255 \]
\(\chi^2 \) statistics.

Remark. For a \(c\% \) confidence interval, the boundaries are

\[
\left(\bar{x} - Z_{c/2} \frac{S}{\sqrt{n}}, \bar{x} + Z_{c/2} \frac{S}{\sqrt{n}} \right) \quad \text{or...}
\]

\[
\left(\bar{x} - Z_{c/2} \frac{S_x}{\sqrt{m}}, \bar{x} + Z_{c/2} \frac{S_x}{\sqrt{m}} \right)
\]

(3.19)

\((n \text{ sample, } S_x = \text{st. dev, } \bar{x} = \text{mean}) \).

\[
\frac{S_x}{\sqrt{n}} = \text{called standard error.}
\]

(3.19): good when we have a sample mean and want uncertainty for population mean.

OTOH, with a normal distribution (Table 3.1) the confidence interval for a measurement is...

90% \(\pm 1.645 \)

95% \(\pm 1.960 \)

99.9% \(\pm 3.29 \) \(\text{both called "maximum error."} \)

Don't ask why.

(3.19): confidence interval for mean. Can we form a confidence interval for standard deviation?

Yes, with \(\chi^2 \)-distribution (f. 3.5)
\[\frac{(n-1) S_x^2}{\chi^2_{n-1}} < \sigma^2 < \frac{(n-1) S_x^2}{\chi^2_{0.5}} \quad (c\% = 1-\alpha) \]

NB: \(\chi^2 \) - not symmetric.

- can be used to test sample normally. (NB: 3.30)

What is \(\chi^2 \)?

Example: A random-number generator churns out 100 numbers 1 to 9 with the distribution as listed. Assess if the distribution differs significantly from expected @ 95% confidence level.

<table>
<thead>
<tr>
<th>Digit</th>
<th>Observed freq.</th>
<th>Expected freq.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>17</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>18</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>10</td>
</tr>
</tbody>
</table>

Solution

Random-number generator should spit out every digit with equal probability thus the "expected" distribution should be 100/10 = 10 per each.
\[\chi^2 = \frac{(7-10)^2}{10} + \frac{(12-10)^2}{10} + \frac{(12-10)^2}{10} + \frac{(7-10)^2}{10} + \frac{(6-10)^2}{10} + \frac{(8-10)^2}{10} + \frac{(4-10)^2}{10} = 8.6. \]

\[\chi = 1 - 99\% = 1\% = 0.01. \]

\[\nu = 10 - 1 = 9. \]

Look up \(\chi^2_{0.01}, 9 \) in \(\chi^2 \) table: \(\chi^2_{0.01} = 21.66 \)

\[8.6 < 21.66 \Rightarrow \text{no significant difference} \]

Ans.