Introduction

- MEMS
 - Micro – scale on which the devices exist
 - Electro – devices have electrical input/output
 - Mechanical – devices have mechanically moving parts
 - System – integration of components
- Why develop MEMS?
 - Sensors (Analog Devices – Accelerometer (Airbag Sensor))
 - Small package
 - Lightweight
 - Higher sensitivity
 » Small forces – sub-mN
 » Small displacements – sub-μm
 - Actuators (Texas Instr. Micromirror Device)
Types of MEMS

- Bulk Micromachining
 - Removal of bulk Si from wafer to define a device
 - Examples
 - SCREAM
 - SCALPEL

Conceptual Design for Thin Film Tester
Load Cell Fabrication

Load Cell Force Calibration

UNM The University of New Mexico

Moving Vernier
Stationary Vernier
Fix-Fix Beams
Si Cleave Line
Si

Load Frame
1500 μm Long Fix-Fix Beams

Loading Tip
1000 μm Diameter Sapphire Sphere

Vernier
δ = 4.75 μm
Sphere Hanging by Epoxy
Epoxy
Sapphire Sphere
Gold Nanofilm Characterization

- Analysis of Au Film
 - Au film sputtered on Si (100) substrate
 - Stoney’s Formula
 - ~10 MPa residual compressive stress
 - XRD
 - Main orientation (111)
 - ~2.5 MPa residual compressive stress
 - TEM
 - Average grain size ~57nm

- Average grain size ~57nm
Experimental Setup

Gold Nanofilm Data

The force-displacement relationship for gold nanofilms is shown, with different symbols representing different films. The theoretical membrane theory line is also indicated.
Fracture

- Au Film
 - 100 nm thick
 - (111) Texture
 - 10 MPa compressive residual stress

Creep of Au Films

Creep Behavior of 100 nm Thick Au Film at Room Temperature

Thickness = 100 nm
Diameter = 500 μm
Average Grain Size = 57 nm
Indenter Diameter = 300 μm
Max Applied Load = 761 μN
Temperature = 20 °C
Types of MEMS

- **Surface Micromachining**
 - Selective deposition and removal of thin films from a substrate (Si) to create a multi-level device
 - SUMMIT™ Process (Sandia)
 - DMD Process (Texas Instruments)

Stiction

- **Stiction** - Unintended structural collapse due to secondary forces

Causes
- During etching of sacrificial layers
- Application of surface treatments
Experimental Concept

- **Stiction failed cantilever (s-shaped failure)**
 - Fixed end of beam raised incrementally
 - Crack length \(s \) is measured before and after increment
 - Arrest value for the critical strain energy release rate is found

Experimental Setup

- Linear stage for course z-motion
- Piezoelectric actuator for fine z-motion
- Interferometric objective
- Microcantilever
- Substrate
- Linear stages for x-y motion
Microcantilevers Used in this Work

- SUMMiT IV™ from Sandia
- Beam dimensions: 30 μm wide and 1500 μm long

‘Wet’ Experimental Results

- Wet experiments in IPA vs. DI
 - $G_{IPA} < G_{DI}$
 - poly-Si substrate
 - Hydrophilic gold
 - Hydrophobic gold

Surface Tension Effect

$$\sigma_{DI} = 73 \text{ mJ/m}^2 ; \sigma_{IPA} = 21.7 \text{ mJ/m}^2$$
Types of MEMS

- **LIGA** – Lithographie Galvanoformung und abformung
 1. Deposit PMMA onto a substrate
 2. Develop PMMA
 3. Deposition of metal onto primary substrate
 4. PMMA removed
 5. Injection molding of another plastic
 - **Forms**
 - Freestanding metal structure
 - Plastic injection-molded structure
 - Investment-cast metal structure from injection-molded structure
 - Slip-cast ceramic part from injection-molded structure

LIGA Dynamometer