Lecture 21

Chapter 25
Machining Centers, Advanced
Machining Concepts and
Structures, and Machining
Economics (cont.)

Vibrations and Chatter

• Vibrations and chatter occurs in cutting tools and
 machine components
 – Low stiffness
 – Low damping

• Effects of vibrations and chatter
 – Poor surface finish
 – Loss of dimensional accuracy
 – Premature wear/chipping of tools
 – Possible damage to machine tool components
 – Noise
Forced Vibrations

• Forced vibration – caused by a periodic applied force
 – Gear drives
 – Imbalance of machine-tool components
 – Misalignment
 – Motors
 – Pumps
 – Entry and exit from a workpiece

Removal of Forced Vibrations

• Solution: isolate or remove the forcing element
 – Natural frequency – \(\omega_n \)
 • Increase/Decrease k (increasing preferred)
 • Increase damping
 – Cutting parameters generally does nothing
 • Cutting speed change helps
 • Tool geometry change helps
 – Direct driving forces closer to center of gravity
 • Reduce bending moment
Self Excited Vibrations (Chatter)

• Cause: Interaction of the chip removal process and the structure of the tool
 – Type of chips produced
 – Lack of homogeneity in the workpiece material or its surface conditions
 – Variations in the frictional conditions at the tool-chip interface

• Solution
 – Increase stiffness
 – Increase damping

Factors Influencing Chatter

• Chatter is proportional to:
 – Cutting forces
 – Depth of cut
 – Width of cut
 – Hardness

• Chip type
 – Continuous chip means steady forces – no chatter
 – Discontinuous or serrated means unsteady forces – chatter possible

• Other factors
 – Dull cutters
 – Lack of cutting fluids
Internal Damping of Structural Materials

- Damping is the rate at which vibrations decay
- External Damping – from outside sources
 - Floors
 - Specially prepared
 - Reinforced foundations

Joints in Machine Tools

- Internal damping – energy loss in materials during vibration
 - Bolted joints dampen a machine-tool system
 - Reduces overall stiffness
Guidelines for Reducing Vibration and Chatter

- Minimize tool overhang
- Improve stiffness
 - Workholding devices
 - Support workpieces rigidly
- Modify tool and cutter geometry to minimize forces and make them uniform
- Change cutting processes
 - Cutting speed
 - Cutting fluids
- Increase the stiffness of the machine tool and its components
 - Higher E
 - Larger cross-sections
- Improve the damping capacity of the machine tool

Machining Economics

- Limitations of machining (but machining is still important)
 - Relatively long time for machining (relative to forming/shaping)
 - Need to reduce non-cutting time
 - Material is wasted
- Economic factors
 - Tools / Machine Tools / Fixtures
 - Labor and overhead
 - Time for setup
 - Material handling
 - Gaging (Metrology)
 - Cutting and Non-Cutting times
Optimal Economics

Rest of notes are board-work