Overview

- Machining center
 - Turning
 - Boring
 - Drilling
 - Planing
 - Nearly any machining process
 - CNC - automated
- Reconfigurable machines
 - Modular components allow for easy reconfiguration
- Trends in design and materials for machine tools
 - Independent variables (you get to choose)
 - Stiffness
 - Vibration
 - Chatter
 - Damping characteristics
 - Dependent variables (determined by independent variables)
 - Surface quality
 - Dimensional accuracy
 - Tool life
 - Productivity
 - Machining Economics
Examples of Parts Machined Using Machining Centers

- Note that no one machining operation could produce any of these parts

Machining Center

- Computer-controlled machine
- Workpiece is stationary (fixtured)
- Machining operation is brought to the workpiece
Machining Center Components and Definitions

- **Pallet**
 - Workpiece fixtured on it

- **Automatic tool changer (ATC)**
 - Takes tool from storage to spindle

- **Touch probes**
 - Check dimensions of tool and part

- **Traveling column**
 - Changes position of spindle

- **Bed**
 - Pallet and column move on this rigid fixture

- **Envelope**
 - Dimensions that the cutting tools can reach

Pallet Flow in a Manufacturing Process

- The workpiece is attached to a pallet prior to entering a machining center
 - Less time between machining workpieces
 - Saves money
ATC

- Tool storage – up to 200 cutting tools can be stored
 - Magazine
 - Drum
 - Chain
- Automatic tool changing
 - Saves time (takes only 5 – 10 sec typically)
 - Saves money

Touch Probes

- Touch probes determine
 - Workpiece dimensions
 - Tool dimensions
 - Tool wear
Vertical Machining Centers

- Deep cavities
 - Molds
 - Dies
- Handles thrust forces
 - Good dimensional accuracy
 - Less expensive than HMCs

Horizontal Machining Centers (HMC)

- Typically for Tall workpieces
- Universal machining centers combine both
 - VMC
 - HMC
Chip Management

- Chip conveyors necessary
 - High production rate of parts
 - High production rate of chips
- Spindle speeds
 - Typically 4,000 – 8,000 rpm
 - As high as 75,000 rpm
 - Chips galore

Characteristics of Machining Centers

- Operate efficiently, economically, repetitively
 - Tolerances typically 0.0001"
- Versatile and capable of quick changeovers
- Times reduced
 - Loading and unloading workpieces
 - Changing tools
 - Gaging the part
 - Troubleshooting
- Detection of worn and broken tools
 - Position compensation for worn tools
- In-process and post-process gaging
- Completely automated – reduces labor costs
Machine-Tools Structural Materials
(Relatively Cheap)

• Structures are typically made of
 – Gray cast iron
 • Good damping
 • Low cost
 • Heavy
 – Welded steel
 • High stiffness-to-weight ratio
 • Low damping capacity

Machine-Tools Structural Materials
(Relatively Expensive)

• Granite-epoxy
 – Good castability
 – High stiffness-to-weight ratio
 – Thermal stability
 – Resistance to environmental degradation
 – Good damping capacity
• Polymer concrete
 – Good damping capacity
 – Low stiffness
 – Poor thermal conductivity
• Ceramic
 – Strong
 – Stiff
 – Corrosion resistant
 – Gives good surface finish
 – Good thermal stability
 – Low density – good for high speed machinery
• Composites (polymer-matrix, or metal-matrix, or ceramic matrix)
 – Allows for high-accuracy
 – High speed machining
 – Expensive
Design Considerations

- Consider the following factors
 - Design, materials, construction
 - Spindle materials and construction
 - Thermal distortion and machine components
 - Error compensation and motion control in the slideways

Alternative Development

- Hexapod machine – new design considerably different from traditional machining centers
- Increased machining flexibility and larger envelope
- Telescoping tubes (struts or legs) control six sets of coordinates
 - 3 linear
 - 3 rotational
- Characteristics of the hexapod
 - High stiffness
 - Not as massive as a machining center
 - 1/3 fewer parts
 - Large machining envelope
 - High flexibility