Lecture 18

Chapter 24
Milling, Sawing, and Filing; Gear Manufacturing
(cont.)

Planing

- For production of:
 - Flat surfaces
 - Grooves
 - Notches
- Performed on long (on average 10 m) workpieces
- Workpiece moves / Tool is stationary
- Uses a reciprocating motion
 - Typically only on stroke cuts
 - Not efficient or economical
- Due to length of cut – chip breakers are necessary
Shaping

• Same as planing except tool moves
• Specific process – horizontal shaper
 – Tool travels back and forth along a straight path
• Typically the forward ram movement cuts (push cut)
• Others cut on the return stroke of the ram (draw cut)

Broaching

• For production of:
 – Internal surface features
 • Holes
 – Circular
 – Rectangular
 – Irregular
 • Keyways
 • Teeth of internal gears
 • Multiple spline holes
 – External surface features
 • Flat surfaces
 • Grooved surfaces
Broaching

- Similar to shaping except it is a multi-tooth cutter
- Broach depth of cut = sum of depth-of-cut of each tool
- Gives relatively good
 - Surface finish
 - Dimensional accuracy
- Tooling is expensive – for high-quantity production runs

- Rake (hook) angle depends on material cut
- Clearance is typically between 1° and 4°
- Pitch of teeth depends on:
 - Length of cut
 - Tooth strength
 - Size and shape of chips
- Pitch = $k(l)^{0.5}$
 - $k = 1.76$ when l is in mm
Chip Breakers and Processing

- Chip breakers for broaches
 - Slots placed along a tooth
 - Staggered
- Process for internal broaching
 - Drill hole
 - Boring
 - Broaching

Other Broaching Operations

- Pull type internal broach
- Broaching of crankshafts
Other Broaching Operations

- Several different pull-type broaches

Broaching Process Parameters and Guidelines

- Process parameters
 - Broach materials
 - M2 and M7 HSS
 - Carbide inserts
 - Coatings
 - Improve tool life
 - Surface finish
 - Cutting fluids are recommended especially for internal broaching

- Design Guidelines
 - Parts
 - Design for ease of clamping
 - Parts should have sufficient structural strength and stiffness
 - Avoid blind holes, sharp corners, dovetail splines
 - Chamfers are preferred over round corners
Sawing

- **Definition**
 - Cutting with a tool consisting of a blade with a series of small teeth
- **Kerf** – width-of-cut
- **Saw blades** are generally high carbon and HSS
- **Sawing thin stock**
 - Thinner stock needs finer teeth and more teeth per unit length
 - At least 2 teeth need to be engaged to prevent snagging

Different Types of Saws

- **Hacksaws**
 - Straight blades
 - Reciprocating motion
 - Cutting only takes places on one stroke (push or pull)
- **Circular saws**
 - Used for “cutting off” processes
 - Circular blade with teeth along:
 - Outer diameter
 - Large, irregular cross sections
 - Inner diameter
 - Cutting of single crystal Si wafers
- **Band saws**
 - Long, flexible blades
 - Allow for continuous cutting – more economical
Filing

- Involves the removal, on a small-scale, of material from:
 - Surfaces
 - Corners
 - Edges
 - Holes
- Common use for removal of burrs
- Usually made from high carbon or HSS
- Typical shapes (non-rotary)
 - Rectangular
 - Circular
 - Triangular

Gear Manufacturing

- Gears: a mechanism by which to transmit rotational motion for:
 - Conversion to linear motion
 - Conversion to rotational motion at the same/different velocities and torques
- Gear-tooth quality affects:
 - Energy transmission
 - Vibration and noise
 - Frictional and wear characteristics
There are 2 main methods of forming gears
- Form cutting
- Generating

Form cutting
- Cutter mounted on an arbor travels parallel to axis of gear
- After each pass the gear is rotated a constant amount

Broaching is a form cutting method
- Used particularly for internal gear teeth
- Cost-effective only for high-quantity production
Gear Generating

- Pinion shaped cutter
 - Cutter rotates slowly while axially reciprocating
- Rack shaper
 - Reciprocates parallel to axis of gear blank that is incrementally rotating

Gear Hobs

- Hob – gear-cutting screw
 - Hob and gear blank rotate at the same time and at different rates
 - Creates
 - Spur gears
 - Helical gears
 - Hobbing is used extensively in industry
Gear Finishing

- Gear-tooth quality affects:
 - Energy transmission
 - Vibration and noise
 - Frictional and wear characteristics
- Shaving – removes small amounts of material from tooth profile
- Burnishing – surface plastic deformation process
 - Resulting cold worked piece
 - Compressive residual stresses in tooth surface
 - Improved fatigue life
- Grinding, honing and lapping
 - Final three processes (performed in the above order) to give a gear superior:
 - Accuracy
 - Lifetime
 - Quiet operation
 - Low production rates
 - Costly

Gear Manufacturing Costs

- Higher number gives:
 - Higher dimensional accuracy
 - Higher price