Lecture 14

Chapter 22
Cutting-Tool Materials
and
Cutting Fluids
(continued)

Tool Coatings

• Why are coatings employed?
 – Lower friction
 – Higher adhesion
 – Higher resistance to wear and cracking
 – Diffusion barrier
 – Increase hot hardness and impact resistance

• Tool life is, on average, 10 times longer for coated tools
• Machining time has been reduced by more than a factor of 100 since 1900
Tool Coatings

• Desirable characteristics of tool coatings
 – High hardness
 – Chemical stability
 – Low thermal conductivity
 – Compatibility and good bonding
 – Little to no porosity

• Typical coatings are:
 – TiN
 – TiC
 – TiCN
 – TiCN
 – Al₂O₃
 – Applied by
 • CVD Processes (Chemical Vapor Deposition)
 • PVD Processes (Physical-Vapor Deposition)
 – 2 – 15 μm thick
Tool Coatings

• TiN
 – Low friction coefficients
 – High hardness
 – Resistance to high temperature
 – Good adhesion
 – Flank wear lessened
 – Avoid low speeds – chip adhesion

• Diamond
 – Polycrystalline diamond deposited on SiN inserts
 – Uses
 • Nonferrous metals
 • Abrasives – Al alloys with Si
 • Graphite

• TiC
 – Deposited on WC inserts
 – High flank-wear resistance on abrasive materials

• Ceramic
 – Chemical inertness
 – Low thermal conductivities – transfer more heat to chip
 – Resistance to high temperature
 – Resistance to flank and crater wear
 – Weak bonding to substrate
Multiphase Coatings
- First layer – good bonding characteristics
- Outer layer – wear resistant / low thermal conductivity
- Examples
 - High-speed, continuous cutting TiC / Al₂O₃
 - Heavy-duty, continuous cutting: TiC / Al₂O₃ / TiN
 - Light, interrupted cutting: TiC / TiC + TiN/TiN
- Thinner layers are harder than thicker layers (?)
Tool Coatings

• Primary coating functions
 – TiN: low friction
 – Al₂O₃: high thermal stability
 – TiCN: good flank and crater wear – interrupted cuts

• Function of carbide substrate
 – Thin-carbide substrate: high fracture toughness
 – Thick-carbide substrate: hard and resistant to plastic deformation at high T’s

Multiphase Coating
Ranges of Mechanical Properties for Tooling Materials

- **Diamond, cubic boron nitride**
 - Very high wear resistance
 - Cutting edge strength
 - Chemical inertia to Fe and Ni
 - Avoid vibrations – stiff tool
 - Dry cutting only
 - Avoid interrupted cutting – thermal cycling
Tooling Costs

• Tooling costs
 – 2-4% of manufacturing costs
 – Tool life on average 30 – 60 minutes
 – Why not use shorter life tools that are cheaper?

<table>
<thead>
<tr>
<th>Tool</th>
<th>Size (in.)</th>
<th>Cost ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>High-speed steel tool bits</td>
<td>1/4 sq x 2 1/2 long</td>
<td>1–2</td>
</tr>
<tr>
<td></td>
<td>1/2 sq x 4</td>
<td>3–7</td>
</tr>
<tr>
<td>Carbide-tipped (brazed) tools for turning</td>
<td>1/4 sq</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3/4 sq</td>
<td>4</td>
</tr>
<tr>
<td>Carbide inserts, square 3/16" thick</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plain</td>
<td>1/2 inscribed circle</td>
<td>5–9</td>
</tr>
<tr>
<td>Coated</td>
<td></td>
<td>6–10</td>
</tr>
<tr>
<td>Ceramic inserts, square</td>
<td>1/2 inscribed circle</td>
<td>8–12</td>
</tr>
<tr>
<td>Cubic boron nitride inserts, square</td>
<td>1/2 inscribed circle</td>
<td>60–90</td>
</tr>
<tr>
<td>Diamond-coated inserts</td>
<td>1/2 inscribed circle</td>
<td>50–60</td>
</tr>
<tr>
<td>Diamond-tipped inserts (polycrystalline)</td>
<td>1/2 inscribed circle</td>
<td>90–100</td>
</tr>
</tbody>
</table>

Cutting Fluids

• Primary purposes
 – Reduce friction and wear
 – Cool the cutting zone
 – Reduce forces and energy consumption
 – Flush away the chips
 – Protect machined surface from environmental corrosion

• Drawbacks
 – Chips may curl more – heat concentration at tip
 – Thermal cycling - milling
Cutting Fluids

• Severity of machining processes – the more severe the more necessary a cutting fluid is
 – Sawing
 – Turning
 – Milling
 – Drilling
 – Gear cutting
 – Thread cutting
 – Tapping
 – Internal broaching

Types of Cutting Fluids

• Types
 – Oils
 • Low speed operations
 • T rise is not significant
 – Emulsions – mixture of oil and water
 • T rise is significant
 – Semisynthetics
 • Little mineral oil diluted in water
 • Additives make oil particles smaller
 – Synthetics
 • Chemicals with additives diluted in water
Cutting Fluid Application

- Flooding
 - Single point
 • 10 L/min
 - Multiple point
 • 225 L/min
- Mist
 - For inaccessible areas
- High pressure
 - Directed at flank
 - Through the cutting tool

Near-Dry Machining

- NDM
 - Alleviates environmental impact of machining fluids
 • US generates millions of gallons of waste a year
 - Reducing the cost of the machining operation
 • 7-17% of manufacturing cost
 - Further improves surface quality
 • Use advanced cutting tools