Lecture 12

Chapter 21
Fundamentals of Machining
(continued)

Temperature in Cutting

- The energy dissipated in cutting is converted into heat
Effects of Heating

- Excessive temperatures
 - Lower strength (hardness)
 - Lower stiffness
 - Lower wear resistance of tool
 - Thermal damage
 - Cracking
 - Metallurgical changes
 - Localized heat treatments
- Uneven heating
 - Dimensional accuracy and tolerances

Factors Influencing Machining Operations

a) Heating along the flank of the tool
b) Heating along the tool-chip interface
Where does the energy (heat) go?

- Most heat leaves via the chip
 - Up to 90%

Lowering the Heat

- Lowering the heat in the cutting process
 - Proper design of cutting surfaces
 - Sharp tool
 - Workpiece material
 - Thermal conductivity
 - Cutting fluid
- Increasing cutting speed
 - Increases relative amount of heat carried away in chip
Tool Life and Wear

• Tool life is affected by
 – High stresses at the tip
 – High temperatures
 – Sliding of the chip along the rake face
 – Sliding of the tool along the newly cut workpiece
Hardness of the Workpiece and Cutting Tool

- Tool Hardness

Workpiece hardness

Types of Wear

- Normal Wear
- Catastrophic failure
Crater Wear

- Influencing factors
 - Temperature at the tool-chip interface
 - Chemical affinity between the tool and chip
- Crater wear is a diffusion mechanism
 - Diffusion rate increases with temperature
- Prevention
 - Lower temperature
 - Coating of tools

Flank Wear

- Influencing factors
 - Rubbing of the tool along the machined surface
 - High temperatures
Machinability

• Factors usually defining machinability
 – Surface finish and integrity
 – Tool life
 – Force and power required
 – Level of difficulty in chip control

• A material with good machinability gives a good surface finish and integrity, long tool life, low force and power requirements, and a controllable chip.