
ME 482/582 October 3, 2011

Midterm Project—Creating the Trajectory

Rather than having you spending time trying to create the trajectory—better to spend time on the workcell kinematics, etc.
So here are some tips on creating the trajectory in MATLAB.

1 Parametric Trajectory

1.1 Cubic Parametric Equations

With the following definitions:

a = 0.0625 meters

b = 0.25 meters

t = 0 . . . 4π sec

the motion of the center of the workpiece (e.g. the 4th column of S
objT) is given by the parametric equations

γ(t) =

[
3

8π

]
t2 −

[
1

16π2

]
t3 = p2t

2 + p3t
3 rad (1)

x = (b− a) sin γ(t) + 3a sin

(
γ(t)

a
(b− a)

)
meters (2)

y = 0 meters (3)

z = (b− a) cos γ(t) − 3a cos

(
γ(t)

a
(b− a)

)
+ 0.5 meters (4)

in which the time duration of the trajectory is 4π (really 12.576 seconds). Variable γ(t) is the parameter (it’s really a variable
along the path) and is given as a cubic function of time. The reasons for using a cubic will be discussed in Chapter 7. Note
that I expressed (1) using symbolic coefficients p2 and p3 in addition to the numerical form (coefficients p0 and p1 are both
zero for this rest-to-rest motion).

1.2 Trajectory Generation in MATLAB

Here are some useful MATLAB commands for generating this trajectory for subsequent use in calculating the robot joint
angles.

I’ll begin by creating a time vector from 0 < t ≤ 6.288 seconds with time step of 0.016 seconds. Then use that to calculate
the entire sequence γ(t) using equation (1), and finally obtain x(t) and z(t) using (2) and (4), respectively.

First create the symbolic coefficients of the cubic polynomial for γ(t):

>> p2 = 3/8*pi); % Coefficients of the cubic

>> p3 = -1/(16*pi^2); % polynomial for gamma(t).

Next create a time vector from 0 to 5 seconds with spacing 0.016 seconds:

>> ti = 0; % ti is the initial time (zero)

>> tf = 12.576; % tf is the final time (4*pi seconds)

>> dt = 0.016; % dt is the time step (0.016 seconds)

>> t = [ti:dt:tf]’; % Create time vector as column vector (take transpose)

Now use the time vector to evaluate the cubic polynomial. This is most easily done with the MATLAB y = polyval(p,x)

function. Vector p is the polynomial coefficients in decreasing order, while vector x is the independent variable (here it is
time).

1



ME 482/582 October 3, 2011

>> gamma = polyval([p3 p2 0 0],t); % Evaluate cubic polynomial for gamma

Finally use γ(t) to find x(t) and z(t):

>> a = 0.0625; % Parameter a in meters

>> b = 0.25; % Parameter b in meters

>> x = (b-a)*sin(t)+3*a*sin((t/a)*(b-a)); % x coordinate in meters

>> z = 0.5+(b-a)*cos(t)-3*a*cos((t/a)*(b-a)); % z coordinate in meters

Of course the computation of x and z will be done inside a loop, so x =x(i), t =t(i)etc.

1.3 Trajectory Plots

Below is a plot of γ(t) vs time t. The gentle ramping at each end is the reason we use a cubic.

0 1 2 3 4 5 6 7 8 9 10 11 12 13
0

1

2

3

4

5

6

7

Time (sec)

Pa
ra

m
et

er
 !(
t)

Figure 1: Plot of parameter γ(t) for Midterm Project.

This plot was produced using

>> plot(t,gamma),grid;

You can have multiple MATLAB instructions on the same line, separated by commas (or semicolons). The labels were added
afterwards.

Obviously you can plot x(t) and z(t) in the same manner (as well as a “spatial” plot of x(t) vs z(t) to see the cloverleaf);
also d1(t), θ2(t), and θ3(t) as required for the project.

2


