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Z-Plane RL Design using MATLAB

1 Introduction.

This document is intended to give you an example of using MATLAB and root locus to design controllers (compen-
sators) in the z-plane.

2 Plant and Specifications.

2.1 Plant.

The plant will be an pure unit inertia; this could be any rotary element in a low-friction environment. The general
transfer function from applied torque τ to angular position θ for a pure inertia is

θ(s)

τ(s)
=

1

Js2
=⇒ 1

s2
(unit inertia) (1)

2.2 Specification.

I arbitrarily selected the closed-loop natural frequency to be 100 Hz and damping of 0.707, along with a sampling
frequency of fs=500 Hz (T=0.002). This corresponds to desired s-plane and z-plane pole locations of

s = −ζωn ± jωn

√
1− ζ2 ≈ −444± j444. (2)

z = esT = 0.2596 + j0.3192 ≈ 0.26 + j0.32 (3)

This sampling frequency is quite low; we would typically sample at perhaps 20× the bandwidth (natural frequency).

2.3 Discretized Plant.

With T=0.002, the zoh-discretized model of the plant (found using MATLAB c2d) is:

>> Gc = tf([0 0 1],[1 0 0])

Transfer function:

1

---

s^2

>> Gd = c2d(Gc,T)

Transfer function:

2e-06 z + 2e-06

---------------

z^2 - 2 z + 1

Sampling time: 0.002

This can be expressed as

G(z) =
(2e− 6)z + (2e− 6)

z2 − 2z + 1
=

(2e− 6)(z + 1)

(z − 1)2
(4)

Note the small numerator constant of 2e− 6; that will probably be “counteracted” by a large forward path gain.
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3 Compensator Design.

Proportional control will be tried first, then a lead compensator.

3.1 Proportional Control.

With proportional control the actuating signal sent to the plant is proportional to the error signal, hence the “com-
pensator” is a pure gain K.

3.1.1 Closed-Loop Transfer Function.

With system input called R(z) and system controlled variable (output) called Y (z) the closed-loop transfer function
W (z) is

Y (z)

R(z)
=

KG(z)

1 +KG(z)
(5)

hence the system characteristic equation is

1 +KG(z) = 0 (6)

This is already in “root locus” form.

3.1.2 Root Locus of Proportional Control.

Using equation (6) we can draw the MATLAB root locus:

>> rlocus(Gd); axis equal; grid;

Zooming in on the locus near the “+1” point we get the figure below:
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The locus (blue line) starts from the double pole at z = 1 and goes outside the unit circle—this system is unstable.
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3.2 Lead Compensator.

We need to improve the stability of this system. A lead compensator (a quasi-differentiator) will do that. This can be
seen from two perspectives:

• A lead network will pull the locus to the left, thus keeping it inside the unit circle

• A lead network adds positive phase angle, thereby improving the phase margin

The structure of a lead compensator D(z) is

D(z) =
z + b

z + a
(7)

where the zero is closer to the +1 point than the pole.

3.2.1 Compensator Pole/Zero Locations.

My philosophy on lead compensator design is to place the compensator zero in the s-plane at about one-third the
distance of the desired dominant poles. Thus if the desired poles are at −445 ± j445 I’d place the compensator zero
at about −445/3 ≈ −150. Now in the z-plane this zero location would be

z = esT = e(−150)(0.002) ≈ 0.74 =⇒ D(z) =
z − 0.74

z + a
(8)

The location of the compensator pole is found using the root-locus angle condition, in which we use open-loop transfer
function D(z)G(z):

Σ(angles of vectors from poles to desired pole)− Σ(angles of vectors from zeros to desired pole) = ±180◦ (9)

The relevant values in this problem are:

• The open-loop poles: -1, -1, and the unknown lead compensator pole

• The open-loop zeros: 0.74, -1

• The desired closed-loop pole: 0.26+j0.32

I suggest you draw the z-plane and draw these vectors. Here are the values that I found:

2(156◦) + θ − 146◦ − 14◦ = ±180◦ (10)

Parameter θ in (10) is the angle of the vector from the lead compensator pole to the desired closed-loop pole location.
From (10) this angle is

θ = 28◦ (11)

This implies that the pole must be located at z = −0.354, thus the lead compensator is

D(z) =
z − 0.74

z + 0.35
(12)

The root-locus diagram of D(z)G(z) is shown on the next page; the “cross” shows where I specified the desired pole
(near ζ = 0.6).

The corresponding K at this point is:

K = 3.14e5 = 314, 000 (13)

Remember the small numerator constant in G(z)? This K makes up for it.
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4 Final Closed-Loop System.

With the D(z) and G(z) given previously, the closed-loop transfer function is

Y (z)

R(z)
=

KD(z)G(z)

1 +KD(z)G(z)
(14)

Using MATLAB, this is

>> Wd = feedback(K*Dd*Gd,1)

Transfer function:

0.6287 z^2 + 0.1635 z - 0.4652

-----------------------------------

z^3 - 1.017 z^2 + 0.4555 z - 0.1112

Sampling time: 0.002

>> damp(Wd)

Eigenvalue Magnitude Equiv. Damping Equiv. Freq. (rad/s)

5.58e-01 5.58e-01 1.00e+00 2.91e+02

2.29e-01 + 3.83e-01i 4.46e-01 6.16e-01 6.54e+02

2.29e-01 - 3.83e-01i 4.46e-01 6.16e-01 6.54e+02

The complex closed-loop poles have a damping ratio of 0.65 and a natural frequency of 654 rad/s (104 Hz). I’d say
our design is pretty close.

One could get the step response, etc.

Since this is a Type II system, it should definitely have a DC gain of 1.00; from MATLAB we get

>> dcgain(Wd)

ans = 1


