Z-Plane RL Design using MATLAB

1 Introduction.

This document is intended to give you an example of using MATLAB and root locus to design controllers (compensators) in the z-plane.

2 Plant and Specifications.

2.1 Plant.

The plant will be an pure unit inertia; this could be any rotary element in a low-friction environment. The general transfer function from applied torque τ to angular position θ for a pure inertia is

$$\frac{\theta(s)}{\tau(s)} = \frac{1}{Js^2} \implies \frac{1}{s^2} \text{ (unit inertia)}$$
 (1)

2.2 Specification.

I arbitrarily selected the closed-loop natural frequency to be 100 Hz and damping of 0.707, along with a sampling frequency of f_s =500 Hz (T=0.002). This corresponds to desired s-plane and z-plane pole locations of

$$s = -\zeta \omega_n \pm j\omega_n \sqrt{1 - \zeta^2} \approx -444 \pm j444. \tag{2}$$

$$z = e^{sT} = 0.2596 + j0.3192 \approx 0.26 + j0.32$$
(3)

This sampling frequency is quite low; we would typically sample at perhaps $20 \times$ the bandwidth (natural frequency).

2.3 Discretized Plant.

With T=0.002, the zoh-discretized model of the plant (found using MATLAB c2d) is:

$$>> Gc = tf([0 0 1],[1 0 0])$$

Transfer function:

1 --s^2

>> Gd = c2d(Gc,T)

Transfer function: 2e-06 z + 2e-06 -----z^2 - 2 z + 1

Sampling time: 0.002

This can be expressed as

$$G(z) = \frac{(2e-6)z + (2e-6)}{z^2 - 2z + 1} = \frac{(2e-6)(z+1)}{(z-1)^2}$$
(4)

Note the small numerator constant of 2e-6; that will probably be "counteracted" by a large forward path gain.

3 Compensator Design.

Proportional control will be tried first, then a lead compensator.

3.1 Proportional Control.

With proportional control the actuating signal sent to the plant is *proportional* to the error signal, hence the "compensator" is a pure gain K.

3.1.1 Closed-Loop Transfer Function.

With system input called R(z) and system controlled variable (output) called Y(z) the closed-loop transfer function W(z) is

$$\frac{Y(z)}{R(z)} = \frac{KG(z)}{1 + KG(z)} \tag{5}$$

hence the system characteristic equation is

$$1 + KG(z) = 0 (6)$$

This is already in "root locus" form.

3.1.2 Root Locus of Proportional Control.

Using equation (6) we can draw the MATLAB root locus:

>> rlocus(Gd); axis equal; grid;

Zooming in on the locus near the "+1" point we get the figure below:

The locus (blue line) starts from the double pole at z=1 and goes outside the unit circle—this system is unstable.

3.2 Lead Compensator.

We need to improve the stability of this system. A lead compensator (a quasi-differentiator) will do that. This can be seen from two perspectives:

- A lead network will pull the locus to the left, thus keeping it inside the unit circle
- A lead network adds positive phase angle, thereby improving the phase margin

The structure of a lead compensator D(z) is

$$D(z) = \frac{z+b}{z+a} \tag{7}$$

where the zero is closer to the +1 point than the pole.

3.2.1 Compensator Pole/Zero Locations.

My philosophy on lead compensator design is to place the compensator zero in the s-plane at about one-third the distance of the desired dominant poles. Thus if the desired poles are at $-445 \pm j445$ I'd place the compensator zero at about $-445/3 \approx -150$. Now in the z-plane this zero location would be

$$z = e^{sT} = e^{(-150)(0.002)} \approx 0.74 \implies D(z) = \frac{z - 0.74}{z + a}$$
 (8)

The location of the compensator pole is found using the root-locus angle condition, in which we use open-loop transfer function D(z)G(z):

 Σ (angles of vectors from poles to desired pole) – Σ (angles of vectors from zeros to desired pole) = $\pm 180^{\circ}$ (9)

The relevant values in this problem are:

- The open-loop poles: -1, -1, and the unknown lead compensator pole
- The open-loop zeros: 0.74, -1
- The desired closed-loop pole: 0.26+j0.32

I suggest you draw the z-plane and draw these vectors. Here are the values that I found:

$$2(156^{\circ}) + \theta - 146^{\circ} - 14^{\circ} = \pm 180^{\circ} \tag{10}$$

Parameter θ in (10) is the angle of the vector from the lead compensator pole to the desired closed-loop pole location. From (10) this angle is

$$\theta = 28^{\circ} \tag{11}$$

This implies that the pole must be located at z = -0.354, thus the lead compensator is

$$D(z) = \frac{z - 0.74}{z + 0.35} \tag{12}$$

The root-locus diagram of D(z)G(z) is shown on the next page; the "cross" shows where I specified the desired pole (near $\zeta = 0.6$).

The corresponding K at this point is:

$$K = 3.14e5 = 314,000 \tag{13}$$

Remember the small numerator constant in G(z)? This K makes up for it.

4 Final Closed-Loop System.

With the D(z) and G(z) given previously, the closed-loop transfer function is

$$\frac{Y(z)}{R(z)} = \frac{KD(z)G(z)}{1 + KD(z)G(z)} \tag{14}$$

Using MATLAB, this is

>> Wd = feedback(K*Dd*Gd,1)

Transfer function:

0.6287 z^2 + 0.1635 z - 0.4652

 $z^3 - 1.017 z^2 + 0.4555 z - 0.1112$

Sampling time: 0.002

>> damp(Wd)

Eigenvalue	Magnitude	Equiv. Damping	Equiv. Freq. (rad/s)
5.58e-01	5.58e-01	1.00e+00	2.91e+02
2.29e-01 + 3.83e-01i	4.46e-01	6.16e-01	6.54e+02
2.29e-01 - 3.83e-01i	4.46e-01	6.16e-01	6.54e+02

The complex closed-loop poles have a damping ratio of 0.65 and a natural frequency of 654 rad/s (104 Hz). I'd say our design is pretty close.

One could get the step response, etc.

Since this is a Type II system, it should definitely have a DC gain of 1.00; from MATLAB we get

>> dcgain(Wd)

ans = 1