
ME 481/581 Chapter 3 MATLAB February 1, 2012

Chapter 3 MATLAB Frequency Response Example

A couple years ago one student asked if I could put together some of the MATLAB commands I used in obtaining the
discrete-time G(z) using the integration rules, and for finding the frequency response (magnitude and phase). I’ll even
show a little more than that. So here it is...

1. System under Consideration. Let’s consider a second-order system with damping ratio ζ = 0.1 and natural
frequency fn = 5 Hz. The low damping ratio will give us a resonant peak in the frequency response (as well as much
overshoot in the step response if we were interested in that). We know that the continuous-time transfer function will
be

G(s) =
ω2
n

s2 + 2ζωns+ ω2
n

(1)

Note that this G(s) has a DC gain of 1.

1.1 Continuous System. First we’ll construct the continuous-time system G(s) in MATLAB (one way to do it):

>> zeta = 0.1; % Define damping ratio

>> fn = 5; % Define natural frequency (Hz)

>> wn = 2*pi*fn; % Convert to rad/s

>> numGc = [0 0 wn^2]; % Create numerator of G(s)

>> denGc = [1 2*zeta*wn wn^2]; % Create denominator of G(s)

>> Gc = tf(numGc,denGc) % Create transfer function G(s); call it Gc

Transfer function:

987

s^2 + 6.283 s + 987

1.2 Discrete System. Next we’ll find the trapezoidal discretization; that one is supported by MATLAB. But before
that we have to select a sampling frequency. An old “rule of thumb” is to sample 6–20 times faster than the natural
frequency, so let’s choose fs = 50 Hz (T = 0.02 sec).

>> fs = 50; % Sampling frequency (Hz)

>> T = 1/fs; % Sampling period (sec)

>> Gtrap = c2d(Gc,T,’tustin’) % Find trapezoidal (Tustin) discretization

Transfer function:

0.08497 z^2 + 0.1699 z + 0.08497

z^2 - 1.552 z + 0.8918

Sampling time: 0.02

You might be interested in the poles and zeros of the G(z); the zpk() function helps a little:

>> zpk(Gtrap)

Zero/pole/gain:

ME 481/581 Chapter 3 MATLAB February 1, 2012

0.084971 (z+1)^2

(z^2 - 1.552z + 0.8918)

Sampling time: 0.02

So this G(z) has two zeros at z = −1, but we still don’t know where the poles are! The zpk function won’t factor a
complex denominator (or numerator)! I have no idea why not, but what you must do is extract the numerator and
denominator using the tfdata() function, then use fundtion roots() to find the roots (poles). Like this:

>> [numtrap,dentrap] = tfdata(Gtrap,’v’) % The ’v’ MUST be present or you get a cell array

numtrap = 0.0850 0.1699 0.0850

dentrap = 1.0000 -1.5519 0.8918

>> poles = roots(dentrap) % Find the roots of the denominator (poles)

poles = 0.7760 + 0.5382i

0.7760 - 0.5382i

You don’t really �have to find the poles in this case, but that’s how.

2. Frequency Response. Let’s find the frequency response (mag, phase) at 75% of the natural frequency, which is
f = 3.75 Hz. The magnitude |G| is the steady-state amplitude ratio, while the phase 6 G is the phase shift. MATLAB
returns magnitude as a “pure” number (not dB), and returns phase in degrees. We’ll convert magnitude to dB, and
we’ll do this for both the original continuous system G(s) and the discrete system G(z).

2.1 Continuous system. Here we work with G(s):

>> f = 3.75; % Frequency of interest (Hz)

>> w = 2*pi*f; % Convert to rad/s

>> [magc,phasec] = bode(Gc,w) % Find the frequency response at f = 3.75 Hz

magc = 2.1622 % Magnitude of G(s) as a pure number, somewhat greater than 1 (DC value)

phasec = -18.9246 % Phase lag of G(s) is around 19 degrees

>> magcdB = 20*log10(magc) % Remember that log10 is the base 10 log function

magcdB = 6.6978 % Magnitude of G(s) is around 7 dB (DC value is 0 dB)

2.2 Discrete system. Here we work with G(z):

>> [magtrap,phasetrap] = bode(Gtrap,w) % Same function, but G(z) = Gtrap

magtrap = 2.2563 % Both the magnitude and phase are

phasetrap = -20.1731 % pretty close to G(s)

>> magtrapdB = 20*log10(magtrap)

magtrapdB = 7.0681 % Magnitude of G(z) in dB...pretty close

So that’s how to perform the discretization and find the frequency response at a single frequency point.

ME 481/581 Chapter 3 MATLAB February 1, 2012

However, we usually want to make Bode plots of the frequency response data. This can be done with the same bode

function in MATLAB.

The simplest way is to let MATLAB select the frequency range (we’ll use G(s) here):

>> bode(Gc); grid; % I like to put a grid on the plot

This will produce the plot shown below.

−80

−60

−40

−20

0

20

M
ag

ni
tu

de
 (

dB
)

10
0

10
1

10
2

10
3

−180

−135

−90

−45

0

P
ha

se
 (

de
g)

Bode Diagram

Frequency (rad/sec)

This plot is nice (note that the magnitude is plotted in dB) but if you wish to select the frequency range, you must
pass a vector of frequencies to the bode function. The vector of frequencies should be formed using the logspace()

function to get logarithmic spacing. The logspace() function accepts powers of 10 to determine this range, as well
as a number of points. There’s also the issue of Hz vs rad/s (Problem 3c).

To construct a frequency range of 1 ≤ f ≤ 1000 Hz with 200 points (just as an example), then convert it to rad/sec
and pass it to bode() you would do the following (I’m not going to show the plot):

>> f = logspace(0,3,200); % Construct vector of frequencies (Hz) from 10^0 -> 10^3 w/200 pts

>> w = 2*pi*f; % Convert to rad/s

>> bode(Gtrap,w); % Find Bode plots of G(z)...this might look a little strange!

3. Conclusion. So there is an example of the MATLAB functions used to find and plot the frequency response
characteristics of both a continuous system G(z) and its discrete equivalent G(z). Hope this helps!

NOTE: If you use the bode() function with returned arguments, like

ME 481/581 Chapter 3 MATLAB February 1, 2012

>> [mag,phase] = bode(Gtrap,w);

you will need to remove the “singleton” extra dimension from returned arrays mag and phase. Like this:

>> mag = squeeze(mag); % Remove singleton dimension

>> phase = squeeze(phase); % Here, too...

This didn’t used to be necessary, but that’s progress.

