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Chapter 7 HW Solution

Review Questions.

1. Name two sources of steady-state errors.

1. System configuration (TYPE too low)

2. Type of applied input (ramp, parabolic, etc.

3. Name the test inputs used to evaluate steady-state error.

1. Step (constant position)

2. Ramp (constant velocity)

3. Parabolic (constant acceleration)

4. How many integrations in the forward path are required for there to be zero steady-state error for
each of the test inputs listed in Question 3?

1. Step: need ONE integration

2. Ramp: need TWO integrations

3. Parabola: need THREE integrations

5. Increasing system gain has what effect upon the steady-state error? It usually reduces the error.

9. Define system type. Number of integrations in the forward path of a closed-loop system.

Figure 1: Ramp response.

Problem 2. The ramp response of a system is shown in Figure 1 at
right.

(a) The steady-state error can be read right from the plot after the
“startup” transient has died out; it is

ess = 2 units (1)

(b) Now the input is a unit ramp r(t) = t. The input of Figure 1 was
a ramp of slope

r(t) = vot =
5

2
t = 2.5t (2)

With a ramp input of slope 2.5 the steady-state error was 2 units.
Thus—for a linear system—with a ramp input of slope 1, the steady-
state error will be

ess = 2

(
1

2.5

)
= 0.8 units (3)

Problem 10. The block diagram for this problem is shown below, where G(s) =
5000

s(s+ 75)
.

a. The closed-loop transfer funtion T (s) for this system is:

T (s) =
C(s)

R(s)
=

5000

s(s+ 75) + 5000
=

5000

s2 + 75s+ 5000
=

K

s2 + 2ζωns+ ω2
n

(4)

1



ME 380 Chapter 7 HW April 4, 2012

Figure 2: Unity feedback system of Problem 10.

It is easy to show that:

ζ = 0.53 (5)

ωn = 71 rad/s (6)

So since ζ = 0.53, the percent overshoot to a step input is about

% OS ≈ 15% (7)

b. The 2% settling time is about

Ts ≈
4

ζωn
= 0.11 sec (8)

c. To find the steady-state error to a step input of magnitude 5, notice that the system is TYPE 1, therefore from
Table 7.2 the step error constant Kp =∞, and

For r(t) = 5, ess = 0 (9)

d. For a ramp input of r(t) = 5t, one needs the velocity error constant Kv, thus

Kv = lim
s=0

sG(s) = lim
s=0

(s)5000

s(s+ 75)
=

5000

75
(10)

Then the steady-state error to a ramp of slope vo = 5 is

ess =
vo
Kv

=
5

5000/75
= 0.075 (11)

e. For a parabolic input r(t) =
1

2
aot

2 = 5t2, one uses the acceleration error constant Ka, and from Table 7.2

Ka = 0. Thus the error is

ess =
ao
Ka

=
5(2)

0
=∞ (12)

The steady-state error of ∞ means that the system keeps falling further and further behind.

Problem 15. The block diagram for this problem is shown below in Figure 3:

Since the system TYPE is the number of “free” integrations in the forward path, we need to reduce the system block
diagram to the point where we have the forward path transfer function.

First reduce the inner loop,

G(s)inner =
100(s+ 2)

s(s+ 5) + 1000(s+ 2)
=

100(s+ 2)

s2 + 1005s+ 2000)
(13)

The complete forward path transfer function is the product of this G(s)inner with
1000

s
. Since G(s)inner has ZERO

free integrations, and
1000

s
has ONE free integration, the result is:

System TYPE = 1 (14)
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Figure 3: Block diagram for Problem 15.

Problem 38. The block diagram for this problem is shown below in Figure 4. Both reference input R(s) and
disturbance input D(s) are unit step functions.

Figure 4: Block diagram for Problem 38.

Even though the text asks for the TOTAL steady-state error, I wanted you to find the error SEPARATELY due
to the unit step input, and the unit step disturbance. The total error will be the sum of these two errors, but I think
it’s instructive to first find them separately.

a. Error due to reference input R(s). Here you can use the position error constant Kp to find the error,

Kp = G(0) =
100

(5)(2)
= 10 (15)

and the steady-state error is

(ess)ref =
ro

1 +Kp
=

1

11
= 0.0909 (16)

b. To find the error due to the disturbance input D(s), you have to use the disturbance transfer function, which is
the second part of text equation (7.60):

E(s) = − G2(s)

1 +G1(s)G2(s)
D(s) = − 100(s+ 5)

(s+ 2)(s+ 5) + 100
× 1

s
(17)

Applying the Final Value Theorem to the result of (17) yields

(ess)dist = lim
s=0

[
− (s)100(s+ 5)

(s+ 2)(s+ 5) + 100
× 1

s

]
= −500

110
= −4.5455 (18)

The error from the unit step disturbance is much larger than the error from the unit step reference input. To reduce
this error to the disturbance we would need to increase the gain preceding the entry point of the disturbance.
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Problem 40. The block diagram for this problem is shown in Figure 5, where I added the variable label E(s):

E(s)

Figure 5: Block diagram for Problem 38.

We are given G(s) = 5 and P (s) =
7

s+ 2
.

The Simulink model for this system is shown in Figure 6 below:

Reference
input r(t)

Plant
7

s+2
Output c(t)

5

Error e(t)

Disturbance
input d(t)

er

Figure 6: Simulink model for Problem 40.

a. The steady-state error due to a command (reference) input R(s) =
3

s
can be found using the position error

constant Kp,

Kp = G(0) =
(5)(7)

2
=

35

2
= 17.5 (19)

For step input of magnitude ro = 3, the steady-state error is

ess =
ro

1 +Kp
=

3

1 + 17.5
= 0.162 (20)

Figure 7: Error to reference in-
put.

b. A screenshot of the Simulink scope showing the error with this reference
input is shown at right in Figure 7. It’s a little hard to tell if the final value of
the error is really 0.162, but I’ll assume it is.

FYI, you can use a Simulink “to Workspace” block and have the variable saved
to your workspace. Then you can plot it using MATLAB. That’s usually what
I do, but I didn’t bother to do it here...

c. To find the error to the disturbance input disturbance input D(s), you
again have to use the disturbance transfer function, which for this problem is

E(s) = − P (s)

1 + P (s)G(s)
D(s) = − 7

s+ 37
×−1

s
(21)
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Applying the Final Value Theorem to the result of (21) yields

(ess)dist = lim
s=0

(s)

[
− 7

s+ 37
×−1

s

]
=

7

37
= 0.189 (22)

Figure 8: Error to disturbance in-
put.

d. A screenshot of the Simulink scope showing the error with this reference
input is shown at right in Figure 8. Again, it’s a little hard to tell if the final
value of the error is exactly 0.189, but I’ll assume it is.

e. With both the reference input from (a) and the disturbance input from (e)
acting simultaneously, the resulting error is simply the sum of the errors to
both.

Thus we have

(ess)ref+dist = 0.162 + 0.189 = 0.351 (23)

f. And the Simulink response window is shown in Figure 9 below.

Figure 9: Error with both inputs present.

Looks llike the steady-state error in Figure 9 does approach about 0.35, so that’s confirmation.
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Starr Problem. This is a problem I created that deals with SENSITIVITY ANALYSIS.

Consider a simple angular velocity control system, using an amplifier and a DC motor/load. It is possible to have
both an open-loop angular velocity control system, and a closed-loop system.

K
Km

s + am

ωin(s) ωo(s)

amplifier
gain

motor and
load

Figure 10: Open-loop angular velocity control system.

K
Km

s + am

ωin(s) ωo(s)+

-

amplifier
gain

motor and
load

Figure 11: Closed-loop angular velocity control system.

Please do the following:

a. Find the transfer function
ωo(s)

ωin(s)
for the open-loop system.

The transfer function for the OPEN LOOP system is[
ωo(s)

ωin(s)

]
OL

=
KKm

s+ am
(24)

b. Find the transfer function
ωo(s)

ωin(s)
for the closed-loop system.

The transfer function for the CLOSED LOOP system is[
ωo(s)

ωin(s)

]
CL

=
KKm

s+ am +KKm
(25)

c. Find the DC gain of the transfer function
ωo(s)

ωin(s)
for the open-loop system.

To find the DC gain of a transfer function, just let s = 0, so the DC Gain of the transfer function for the
OPEN LOOP system is [

ωo(s)

ωin(s)

]
OL DC

=
KKm

am
(26)

d. Find the DC gain of the transfer function
ωo(s)

ωin(s)
for the closed-loop system.

Likewise, the DC Gain of the transfer function for the CLOSED LOOP system is[
ωo(s)

ωin(s)

]
DL DC

=
KKm

am +KKm
(27)
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e. Find the sensitivity of the DC gain of (c) to the parameter K. The sensitivity of the open-loop DC gain to the
amplifier gain K can be found by

SOL DC:K =
Kam
KKm

∂

∂K

[
KKm

am

]
= 1 (28)

So if the amplifier gain K increases by 10%, the open-loop DC gain also increases by 10%.

f. Find the sensitivity of the DC gain of (d) to the parameter K. The sensitivity of the closed-loop DC gain to
the amplifier gain K can be found by

SCL DC:K =
K(am +KKm)

KKm

∂

∂K

[
KKm

am +KKm

]
(29)

The partial derivative of the bracketed fraction requires a little algebra...

SCL DC:K =
am +KKm

Km

(am +KKm)Km − (KKm)Km

(am +KKm)2
(30)

The final result is

SCL DC:K =
am +KKm −KKm

am +KKm
=

am
am +KKm

, which is < 1 (31)

g. Which system has the least sensitivity of DC gain to variations in amplifier gain K?

Comparing the sensitivities of (28) and (31), you can see that the closed-loop system is less sensitive to variations
in amplifier gain K. The higher the gain K, the less the sensitivity of the closed-loop system.

This is one of the advantages of closed-loop feedback systems.
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