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Chapter 5 HW Solution

Review Questions. 1, 6. As usual, I think these are just a matter of text lookup.

1. Name the four components of a block diagram for a linear, time-invariant system. Let’s see, I guess
from the text Figure 5.2 there are

1. Signals (or variables)

2. Systems (i.e. transfer functions)

3. Summing junctions

4. Pickoff points

6. For a simple, second-order feedback control sysem of the type shown in Figure 5.14, describe the
changes in damping ratio as the gain, K, is increased over the underdamped region.

As the gain is increased the damping ratio decreases.

Problems. 1, 11, 15, Starr Problem.

Problem 1(a). Below is my modified text Figure P5.1 with “names” for two of the internal variables in the block
diagram:

U(s)
V (s)

First reduce the inner feedback loop:

V (s)

U(s)
=

50s

s(s+ 1) + 100
=

50s

s2 + s+ 100
(1)

Next reduce the two blocks in parallel:

C(s)

V (s)
= s− 2 (2)

The forward path TF is then the product of (1), (2), and
1

s2
:

G(s) =
1

s2
× 50s

s2 + s+ 100
× (s− 2) =

50(s− 2)

s(s2 + s+ 100)
(3)

There is then an outer unity feedback loop around the forward path of (3),

C(s)

R(s)
=

50(s− 2)

s(s2 + s+ 100) + 50(s− 2)
=

50(s− 2)

s3 + s2 + 150s− 100
(4)

(b) Using MATLAB, follow basically the same procedure. I wrote a script and got the same result.
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>> prob1b

Transfer function:

50 s - 100

-----------------------

s^3 + s^2 + 150 s - 100

I did have to use the ’minreal’ function to do the final cancellation.

Problem 11. The block diagram for this problem is shown below:

Reducing the single feedback loop, the closed-loop transfer function is

C(s)

R(s)
=

225

s(s+ 15) + 225
=

225

s2 + 15s+ 225
=

K

s2 + 2ζωns+ ω2
n

(5)

So we can find

ωn = 15 rad/s

ζ =
15

2(15)
= 0.5 (underdamped)

Using this damping ratio and natural frequency, you get

% OS = 15%

2% Ts =
4

ζωn
= 0.53 sec

Tp =
π

ωd
=

π

ωn

√
1− ζ2

= 0.24 sec

Problem 15. The block diagram for this system is shown below:

Reducing the feedback loop, we get

C(s)

R(s)
=

K

s(s+ α) +K
=

K

s2 + αs+K
=

ω2
n

s2 + 2ζωns+ ω2
n

(6)

So we have

ωn =
√
K, ζ =

α

2
√
K

(7)
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Design Specifications:

30% OS =⇒ ζ = 0.35

Ts =
4

ζωn
= 0.15 =⇒ ωn = 76 rad/s

Thus

K = ω2
n = 5805, α = 2ζ

√
K = 53 (8)

Although not required, the Problem 15 step response is shown below; the 30% overshoot and 2% settling time are
shown on the plot. Pretty good agreement.

0 0.05 0.1 0.15 0.20

0.2

0.4

0.6

0.8

1

1.2

1.4

Starr DC Motor Problem. Consider the DC Motor and Load that I assigned for Chapters 3 and 4. This motor
will be driven by an amplifier with voltage gain Ka.

The position of the load will be measured by the potentiometer described in Chapter 1 HW Problem 1: a 10-turn
potentiometer with ±50V across it. We found the “transfer function” (it’s just a constant gain) back in the Chapter
1 HW. Also consider that the reference input is the desired angle of another of the same potentiometers.

A block diagram of the system is shown below:

G(s)

Kp

Kp

+
-

motor and
load

feedback
potentiometer

input
potentiometer

θL(s)θr(s) E(s)
Ka

amplifier
Ea(s)

Let the transfer function of the “motor and load” be the G(s) of the Chapter 4 HW problem, with load position θL
in rad, and motor voltage ea in V. Both the “input potentiometer” and “feedback potentiometer” are identical, and
have transfer function (gain) of Kp V/rad in accordance with Chapter 1 Problem 1.

(a) Find the closed-loop transfer function
θL(s)

θr(s)
. From the Chapter 1 HW, a diagram of the (10-turn) potentiometers

is:
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From the Chapter 1 HW, the “transfer function” Kp of the input & feedback potentiometer (they are identical) is

Kp =
V (s)

θ(s)
=

50− (−50)

(10)(2π)
=

100

20π
= 1.5915

V

rad
(9)

From the Chapter 4 HW, the transfer function of the Motor+Load is:

θL(s)

Ea(s)
=

Kt

nRaJt

s

(
s+

bt
Jt

) =
90.07

s(s+ 101.8)

rad

V
(10)

The system block diagram is then shown below, with all numerical blocks populated. Note that the units of all variables
are shown in parentheses.

+
-

motor and
load

feedback
potentiometer

input
potentiometer

θL(s)θr(s) E(s)
Ka

amplifier
Ea(s)

1.5915

1.5915

90.07

s(s + 101.8)(rad) (V) (V)

(V)

(rad)

This is a simple feedback loop with an input transfer function preceding it. The closed-loop transfer function is

θL(s)

θr(s)
= Kp ×

90.07Ka

s(s+ 101.8) + 90.07KaKp
=

90.07KaKp

s2 + 101.8s+ 90.07KaKp
=

143.3Ka

s2 + 101.8s+ 143.3Ka

rad

rad
(11)

(b) Find the value of amplifier gain Ka to yield critical damping.

From the closed-loop system TF of (11), we have

ωn =
√

143.3Ka =⇒ ωn ≈ 12
√
Ka, (12)

thus

ζ =
101.8

24
√
Ka

= 1 =⇒ Ka =

(
101.8

24

)2

= 18
V

V
(13)
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(c) What is the DC gain of the closed-loop system?

Denoting the closed-loop transfer function of (11) by T (s), we have

DC Gain =

[
θL
θr

]
ss

= T (0) = 1. (14)

So 1 turn of the input potentiometer will (eventually) cause a motion of 1 turn of the load position. That’s what
DC Gain means...

(d) Plot the step response of the system to a 1-turn step input.

Since the reference input is in units of radians, the input is a step of magnitude 2π. The output is shown below:
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Figure 1: Response of load to 1-turn reference step input.

The red dashed line shows the final value (DC Gain = 1). Critical damping provides the fastest possible response to
a step input with no overshoot.

(e) Plot motor voltage ea in response to the input of (d). You will have to re-draw the block diagram showing motor
voltage as the output. The “motor and load” will now be in the feedback path, and you will have to find the transfer
function Ea(s)/θr(s). It should have the same denominator as in (a), but the numerator will be different.

Re-drawing the block diagram (as shown in class) to expose Ea as the output, we get
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G(s)Kp

Kp

+
-

motor and
load

feedback
potentiometer

input
potentiometer

θL(s)

θr(s) E(s)
Ka

amplifier
Ea(s)

Reducing this TF in MATLAB, I got

28.65 s^2 + 2916 s

--------------------

s^2 + 101.8 s + 2580

Expressing this TF in a factored form, we get

Ea(s)

θr(s)
=

28.6s(s+ 101.8)

(s+ 54.14)(s+ 47.66)
(15)

Notice that the two poles are not quite equal—this was probably due to my rounding-off of intermediate calculations.
Well, none of this stuff is really that precise!

The step response is shown below.
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Figure 2: Voltage applied to motor in response to 1-turn reference step input.

So, in response to a one-turn step input, the motor voltage jumps immediately to 180 volts!! Do you think the motor
can handle that? Without motor specifications there’s no way to tell, but it is likely that the motor would saturate,
and that it wouldn’t move quite as fast as you predicted.

So a one-turn step input is too large of a command. As I’ve said, a step input is more for analytical test purposes,
and is often not something you’d actually do in a lab with real hardware. You’d apply a much “gentler” input...
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