
ME 380 Chapter 3 HW February 13, 2012

Chapter 3 HW Solution

Problem 19. Consider a DC motor driving a load through a gear train:

bL

The specifications for the Pittman 7214 DC motor (taken from the manufacturer’s data sheet) are:

Jm = 1.54 ∗ 10−6 kg-m2 (not shown in figure)

bm = 2.7e− 3
mN-m

rad/s
(not shown in figure)

La = 0.69 mH

Ra = 1.53 Ω

Kt = 22.3
mN-m

A

Kb = 0.0223
V

rad/s

The load inertia is a disk made of aluminum with the following dimensions:

radius r = 100 mm

thickness t = 10 mm

viscous damping bL = 4
mN-m

rad/s

gear ratio n =
N2

N1
= 50

(a) As presented in class, the three equations that model an armature voltage-controlled DC motor are (with back
EMF vb = Kbωm):

ea − iaRa − La
dia
dt

−Kbωm = 0 (1)

Tm = Ktia (2)

Tm − bmωm = Jmω̇m (3)

The three state variables are x1 = ia, x2 = θm, x3 = ωm, so the state vector is

x =

 iaθm
ωm

 =

x1x2
x3

 (4)
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State Equations. From (1) we can find the first state equation:

dia
dt

=
1

La
(ea − iaRa −Kbωm) (5)

The second state equation is a simple derivative:

dθm
dt

= ωm (6)

The third state equation comes from (3) with (2) substituted in:

dωm

dt
=

1

Jm
(Ktia − bmωm) (7)

Substituting for the three state variables xi and input u = ea, we get the three state equations as:

ẋ1 = −Ra

La
x1 −

Kb

La
x3 +

1

La
u

ẋ2 = x3

ẋ3 =
Kt

Jm
x1 −

bm
Jm

x3

(8)

(9)

(10)

From (8)–(10) we can find system matrix A and input matrix B as

A =


−Ra/La 0 −Kb/La

0 0 1

Kt/Jm 0 −bm/Jm

 , B =


1/La

0

0

 (11)

Output Equations. The output matrix C must produce three outputs: current ia in (A), motor displacement
θm in (rev), and motor velocity ωm in (rpm). So matrix C will contain the appropriate unit conversions. What
we need is

C =


1 0 0

0 1/(2π) 0

0 0 60/(2π)

 , D =


0

0

0

 (12)

where “feed-thru” matrix D is zero for this physical system.

Simulation. Using a similar MATLAB script to that on the website, I simulated the motor to the voltage pulse
using the MATLAB lsim() function.

The three plots requested,

• Motor armature current ia in units of (V),

• Motor displacement (angular rotation) θm in units of (rev),

• Motor velocity ωm in units of (rpm),

are all shown on the next page. Inspection of the data shows that:

Maximum armature current = 5.4129 A

The motor rotated 7.149 revolutions
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Armature Current (A)

(a) Armature current.
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Motor Displacement (revolutions)

(b) Motor displacement (rev) vs time.
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Motor Velocity (rpm)

(c) Motor velocity (rpm) vs time.

Figure 1: Motor response to voltage pulse.

Note that in Figure 1(a) the current immediately “spikes” up to begin supplying torque, then drops off as the
motor accelerates to a constant speed, as seen in Figure 1(c). The motor rotation of 7.149 revolutions appears
in Figure 1(b). Also, the maximum speed of the motor is 4,247 rpm. That’s why we use gear trains—these
motors spin FAST!

(b) Repeat part (a) but now neglect the armature inductance. You will now have only two state variables: x1 = θm
and x2 = ωm. You will also now have only two outputs. NOTE: Since armature current ia is no longer a state
variable, you will have to figure out some other way of computing it to make the plot (Hint: look at the armature
voltage equation).

State Equations. Neglecting La, the three motor equations are the following:

ea − iaRa −Kbωm = 0 (13)

Tm = Ktia (14)

Tm − bmωm = Jmω̇m (15)
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Since motor current ia is no longer a state variable, it can be eliminated. Do this by solving (13) for current ia:

ia =
1

Ra
(ea −Kbωm) (16)

Substitute from (16) for ia into (14), and you get

Tm =
Kt

Ra
(ea −Kbωm) (17)

Now substitute Tm from (17) into (15), rearrange, and you get

ω̇m = − 1

Jm

(
KtKb

Ra
+ bm

)
︸ ︷︷ ︸

beq

ωm +
Kt

Ra
ea (18)

where the term beq is defined to include both the motor viscous friction and the “electronic” back EMF damping.
This just simplifies things.

Now equation (18) is actually the second state equation. Remember the state variables are now x1 = θm and
x2 = ωm. So using “standard” notation the two state equations for the motor (neglecting La) are:

ẋ1 = x2

ẋ2 = − beq
Jm

x2 +
Kt

JmRa
u

(19)

(20)

where again u = ea is the motor input.

From (19)-(20) the simplified motor system and input matrices are

A =

0 1

0 −beq/Jm

 , B =

 0

Kt/(JmRa)

 (21)

Output Equations. Examination of (16) shows that armature current ia can be written as

ia =
−Kb

Ra
x2 +

1

Ra
u, (22)

so motor current ia can be computed as an output of interest using the proper C and D matrices.

The output matrix C is now 3×2, and performs the current computation of (22) plus the same unit conversions:

C =


0 −Kb/Ra

1/(2π) 0

0 60/(2π)

 , D =


1/Ra

0

0

 (23)

Here is a case in which we have a “physical system,” but the D matrix is non-zero. It CAN happen...

Simulation. Using the same MATLAB script as before (with the different matrices), I simulated the motor to
the voltage pulse using the MATLAB lsim() function.
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The same three plots,

• Motor armature current ia in units of (V),

• Motor displacement (angular rotation) θm in units of (rev),

• Motor velocity ωm in units of (rpm),

are all shown below. Inspection of the data with neglected La shows that:
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Armature Current (A)

(a) Armature current.
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Motor Displacement (rev)

(b) Motor displacement (rev) vs time.
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(c) Motor velocity (rpm) vs time.

Figure 2: Motor response with armature inductance La neglected.

Maximum armature current = 6.5359 A

The motor rotated 7.149 revolutions

Is there much difference in the response of the motor compared to (a)? NO! The armature current
is a little larger (neglecting the armature inductance changes the current dynamics slightly), but the mechanical
behavior of the motor (position and velocity) is almost EXACTLY the same. That is why the armature
inductance is commonly neglected...
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(c) Now add the dynamics of the load (load inertia and damping) to the model of part (b), but ignore the inertia
of the gears (it was not given anyway!). Perform the same simulation as in (a). Plot motor current (A), load
velocity (degrees/sec), and load displacement (degrees) vs time.

Basically only two things need to be changed from the analysis of part (b):

• The load inertia and damping need to be added to the that of the motor

• The C output matrix needs to produce load velocity (deg/s) and load displacement (deg)

Load Inertia and Damping. The load is an aluminum disk of thickness t = 10 mm and radius r = 100 mm.
The mass moment of inertia of a cylinder about its center is

JL =
1

2
mr2 kg-m2 (24)

The mass is not given, but the density of Al is ρ = 2.7 g/cm3. The mass can be calculated as 0.8482 kg, and the
mass moment of inertia of the load is

JL = 0.004241 kg-m2 (25)

Since the motor drives the load through a gear train of ratio n, the total inertia and damping of the system as
“felt” by the motor are:

Jt = Jm +
JL
n2

= 3.2365e-06 kg-m2 (26)

bt = beq +
bL
n2

= 3.2933e-04 N-m-s/rad (27)

Note that the mass moment of inertia just about doubled when the load was added—not that much of an
increase.

Output Matrix. To yield load displacement (deg) and load velocity (deg/s), output matrix C is

C =

 0 −Kb/Ra

180/(nπ) 0
0 180/(nπ)

 , D =

1/Ra

0
0

 (28)

Armature current ia is computed as y1 in the same manner as in part (b)

Simulation. Using the same MATLAB script as before (with appropriate changes), I simulated the motor to
the voltage pulse using the MATLAB lsim() function.

The same plots are on the next page. Inspection of the data with neglected La shows that:

Maximum armature current = 6.5359 A

Total load rotation = 51.2223◦

It is interesting that the maximum load current WITH the load is exactly the same as WITHOUT the load.
This doesn’t really make sense. The reason why this is the case is that in these two models we NEGLECTED
armature inductance, which effectively removed the modeling of armature current behavior. The “derived”
armature current didn’t accurately reflect the effect of the load.

Examination of the “shape” of the response of Figure 3(c) shows the somewhat slower response of the system
with the load present.
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Motor Current (A)

(a) Armature current.
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Load Displacement (deg)

(b) Load displacement (deg) vs time.
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Load Velocity (deg/s)

(c) Load velocity (deg/s) vs time.

Figure 3: Motor and Load response with armature inductance La neglected.

This was a realistic problem of modeling a REAL DC motor driving
a rotary load through a gear train. Neglecting armature inertia was a
good assumption. Components like these are very commonly used for
“incremental motion” systems in industry.
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