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ME 380 Chapter 2 HW Solution

Review Questions.

1. What mathematical model permits easy interconnection of physical sysems? The transfer function
model.

3. What transformation urns the solution of differential equations into algebraic manipulation? The
Laplace transformation.

4. Define the transfer function. The transfer function is the ratio of the Laplace transform of the output over the
Laplace transform of the input.

5. What assumption is made concerning initial conditions when dealing with transfer functions? We
assume that the initial conditions are zero.

9. What function do gears perform? Typically a gear train is used to reduce speed and increase torque. In
some cases the reverse is true, but the majority are speed reducers (e.g. automotive transmissions).

Problems.

Problem 8a. For the following transfer function, write the corresponding differential equation.

X(s)

F (s)
=

7

s2 + 5s+ 10
(1)

If you cross-multiply, you get

s2X(s) + 5sX(s) + 10X(s) = 7F (s) (2)

Since multiplication by “s” corresponds to time differentiation, the result is

ẍ(t) + 5ẋ(t) + 10x(t) = 7f(t) (3)

Problem 21a. Find the transfer function G(s) = Vo(s)/Vi(s) of the op-amp circuit shown below.

As I stated in class, an “inverting amplifier” circuit of this type with input impedance Zi(s) and feedback impedance
Zf (s) will have TF

Vo(s)

Vi(s)
= −Zf (s)

Zi(s)
, (4)
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Substituting the values for resistance and capacitance, we get

Zi(s) = Ri +
1

Cis
=

s+ 1

(2e− 6)s
(5)

Zf (s) = Rf +
1

Cfs
=

0.2s+ 1

(2e− 6)s
(6)

Therefore the final TF is

G(s) = −Zf (s)

Zi(s)
= −0.2s+ 1

s+ 1
= −0.2(s+ 5)

s+ 1
(7)

BTW, from its frequency response properties, this thing is called a LAG network (kind of a psseudo-integrator). It
can be used to improve the steady-state response of a feedback control system.

Problem 23. I changed the input to this problem: instead of force f(t) applied to the end of the spring, the input
is displacement u(t) of the free end of the spring (directed positive to the right like displacement x1). This is much
more realistic and easier to analyze.

Thus the problem sketch is like this, where I’ve define parameters m, b, and k so you can first analyze the problem
symbolically (always a good idea):

My free-body diagram is

Applying Newton’s 2nd Law (Σf = mẍ) we get the following equation of motion:

−bẋ1 + k(u− x1) = mẍ1 =⇒ mẍ1 + bẋ1 + kx1 = ku (8)

Laplace transforming (8) and rearranging to get a TF yields the result:

X1(s)

U(s)
=

k

ms2 + bs+ k
=

k

m

s2 +
b

m
s+

k

m

=
1

s2 + 0.8s+ 1

m

m
(9)

Problem 30a. My version of this problem sketch is shown below. We’re supposed to find the equations of motion
(one for each rotary inertia).

b1

k2

k1 =

b2 =

J1 J2
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I told you to use inertia, damping, and stiffness parameters J1, J2, b1, b2, k1, k2 in your analysis, since it’s ALWAYS
preferable to use symbolic parameters (rather than numeric).

For purposes of visualizing the torque directions for the free-body diagram, I assumed that θ2 > θ1, and θ̇2 > θ̇1 (you
could assume the opposite). My free-body diagram is shown below:

As I said in the “hints”, the two moments on J2 labeled k1() and b2() are just k1(θ2 − θ1) and b2(θ̇2 − θ̇1).

To find the equations of motion (EOM), just apply ΣT = Jθ̈ for each rotary inertia.

The EOMs for both inertias are:

J1θ̈1 + (b1 + b2) θ̇1 + k1θ1 − b2θ̇2 − k1θ2 = 0

J2θ̈2 + b2θ̇2 + (k1 + k2) θ2 − b2θ̇1 − k1θ1 = T

(10)

(11)

I would stop there, but the author gives us (phony) values for all these parameters, so I suppose I should substitute
those:

b1 = 8 N-m-s

b2 = 1 N-m-s

k1 = 9 N-m/rad

k2 = 3 N-m/rad

J1 = 5 kg-m2

J2 = 3 kg-m2

The EOMs become

5θ̈1 + 9θ̇1 + 9θ1 − θ̇2 − 9θ2 = 0

3θ̈2 + θ̇2 + 12θ2 − θ̇1 − 9θ1 = T

(12)

(13)

Comparing (12–13) to (10–11) you can see that once you substitute numerical values, you lose track of the contribution
of the parameters. However, with numerical parameters one can now perform numerical simulations (which we will do
using MATLAB).
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Problem 42. This is a DC motor driving a load inertia via a gear train.

In keeping with my classroom analysis, I used the following terminology:

Jm = J1 = motor inertia

bm = D1 = motor viscous friction (damping)

JL = J2 = load inertia

bL = D2 = load viscous friction

beq = combined motor inertia and back EMF

n =
N2

N1
= gear ratio

The total inertia the motor “feels” is Jt, and is given by

Jt = Jm +
JL
n2

(14)

Likewise the total viscous friction the motor feels is

bt = beq +
bL
n2

(15)

where as you recall the “equivalent” damping coefficient is given by

beq = bm +
KtKb

Ra
(16)

Now, the transfer function from applied motor armature voltage Ea(s) to motor position θm(s) is given by

θm(s)

Ea(s)
=

Kt/(RaJt)

s

(
s+

bt
Jt

) (17)

where we have used the total inertia and damping (motor + load).

Given Parameters. The following parameters are given in the problem statement (using my terminology):

Jm, JL, bm, bL, n

Parameters Kt,Kb, Ra must be found from the given speed-torque curve. Remember that Kt = Kb in equivalent units.

Speed-Torque Equation. The equation for motor torque in terms of voltage and speed is:

Tm =
Kt

Ra
(ea −Kbωm) (18)
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At stall torque of 100 N-m, at the given voltage of ea = 50 V:

Tstall =
Kt

Ra
ea =

Kt

Ra
(50) = 100 =⇒ Kt

Ra
= 2 (19)

At no-load speed of 150 rad/s, at the given voltage of ea = 50 V:

ωnl =
ea
Kb

=
50

Kb
= 150 =⇒ Kb =

50

150
=

1

3

V-s

rad
(20)

Since Kt = Kb we also know that

Kt =
1

3

N-m

A
(21)

Finally, remember that you have to use the gear ratio n to get the final result in terms of load rotation angle θL, where
θm = nθL.

Substituting in all parameters, the final result is

θL(s)

Ea(s)
=
Kt/(nRaJt)

s

(
s+

bt
Jt

) =
0.0952

s(s+ 1.81)

rad

V
(22)
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