Linkage Synthesis HW Problem

In this problem you are given a mathematical function for which to design a mechanical function generator. The problem includes the selection of initial and final points for the input and output links, and development of a MATLAB function for linkage synthesis. You will construct a working model of your function generator, then create an ADAMS model to obtain accurate input/output data. Finally, you will create another MATLAB function for structural error analysis. You will email both functions to me, and submit your analysis and working model for grading.

1 Synthesizing the Mechanism

In this problem you will use Freudenstein’s Equation to synthesize a linkage to generate a mathematical function. Your methodology will follow my writeup of that material.

1.1 Function.

The specific function you generate will be one of the following:

<table>
<thead>
<tr>
<th>First letter of your last name</th>
<th>Function</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>a,k,u</td>
<td>(\log_{10} x)</td>
<td>(1 \leq x \leq 2)</td>
</tr>
<tr>
<td>b,l,v</td>
<td>(\sin x)</td>
<td>(0 \leq x \leq \pi/2)</td>
</tr>
<tr>
<td>c,m,w</td>
<td>(\tan x)</td>
<td>(0 \leq x \leq \pi/4)</td>
</tr>
<tr>
<td>d,n,x</td>
<td>(e^x)</td>
<td>(0 \leq x \leq 1)</td>
</tr>
<tr>
<td>e,o,y</td>
<td>(1/x)</td>
<td>(1 \leq x \leq 2)</td>
</tr>
<tr>
<td>f,p,z</td>
<td>(x^{1.5})</td>
<td>(0 \leq x \leq 1)</td>
</tr>
<tr>
<td>g,q</td>
<td>(x^{2.5})</td>
<td>(0 \leq x \leq 1)</td>
</tr>
<tr>
<td>h,r</td>
<td>(x^3)</td>
<td>(0 \leq x \leq 1)</td>
</tr>
<tr>
<td>i,s</td>
<td>(x^3)</td>
<td>(0 \leq x \leq 1)</td>
</tr>
<tr>
<td>j,t</td>
<td>(\ln x)</td>
<td>(1 \leq x \leq 2)</td>
</tr>
</tbody>
</table>

1.2 Precision Points

Use Chebyshev Spacing to select the three precision points used in the solution of the link lengths.

1.3 Arbitrary Parameters

You are free to select the initial and final values for link angles \(\theta_2 \) and \(\theta_4 \) but try to have a range of at least 60 DEGREES for each.

1.4 Synthesizing the Linkage

You are to write a MATLAB function \texttt{freud.m} to perform automated synthesis of the linkage. The format of the function shall be

\[\text{>> function } [r,c2,c4] = \text{freud}(fn,xi,xf,t2i,t2f,t4i,t4f) \]

\[[r,c2,c4] = \text{FREUD}(fn,xi,xf,t2i,t2f,t4i,t4f) \text{ performs three-point kinematic synthesis of a four-bar mechanism using Freudenstein’s Equation. Function handle “fn” computes the mathematical function. xi and xf specify the range} \]
of the independent variable, and Chebyshev spacing is used to determine the
three precision points for the dependent variable. Angles t_{2i}, t_{2f}, t_{4i},
and t_{4f} (DEG) specify the limits of motion of links 2 and 4.
Returned 4x1 vector r contains the link lengths, with $r(1) = 1$, while
returned vectors c_2 and c_4 contain the scaling & bias parameters to go
to/from $[x \ y]$ space to $[t_2 \ t_4]$ space to check the accuracy.

This function is not long: mine contained only 24 lines of M-code.

1.5 Design Iteration

Iterate the design until you achieve satisfactory results. Try to avoid any one link being much longer than the others.
I have not done all these designs; I'm assuming since they are in the text they are feasible (not necessarily a good assumption).

1.6 Model Construction

Construct a working model of your function generator, including input and output scales. Try to be as accurate and
neat as possible. You can scale the entire linkage up or down as needed.

1.7 Error Analysis

In this section you need an EXACT implementation of your linkage from which to collect its input/output character-
tistics. The structural error is the difference between the actual mathematical function and the operation of your
linkage.

1.7.1 ADAMS Simulation

The first step is to construct an ADAMS/View model of your linkage, positioned at the initial position. This should
be similar to the previous four-bar linkages we have built in ADAMS, except for the inclusion of MEASURES. Create
them just like in the example I did. You may need to modify a MEASURE in the ADAMS/Postprocessor to reflect the
joint angle measurement convention of text Figure 10.39.

1.7.2 Data Collection and MATLAB Processing

After you perform a simulation, you should plot the joint angle data (can be done in ADAMS or MATLAB), but to
compute the error you need to save the joint angle data to a file for subsequent processing by MATLAB. Follow the
methods in my example, and write the following MATLAB function to compute the structural error:

```matlab
>>function [x,y,ya] = struc_err(fn,data,c2,c4)
    [x,y,ya] = struc_err(fn,data,c2,c4) computes the structural error 
of a four-bar function-generating mechanism. Function handle "fn" 
defines the prescribed mathematical function. Parameter "data" is a 
2-column array with link 2 angle (DEG) in column 1, and link 4 angle (DEG) 
in column 2. Parameters "c2" and "c4" are the 2x1 arrays of scaling and 
bias coefficients which map from variable space to link angle space. The 
"structural error" is simply the difference between the actual function 
y values and the ones from the linkage. Returned vectors "x", "y", and 
"ya" are the function dependent variable, exact independent variable, and 
approximate independent variable (from your linkage).
```

This function is even shorter: mine contained only 5 lines of M-code!
2 Submission of Results

You will submit three distinct products:

1. Linkage synthesis writeup (including ADAMS simulation)
2. Two MATLAB functions (freud.m and struc_err.m) via email
3. Function generator working model

2.1 Linkage Synthesis Writeup

This should follow my example, and should contain whatever analysis, plots, and results you feel is appropriate. You should include a screenshot of your ADAMS/View model. You will submit this at the beginning of class on Monday, October 24.

2.2 MATLAB Functions

You will submit the two MATLAB functions:

function \[r,c2,c4\] = freud(fn,xi,xf,t2i,t2f,t4i,t4f)

function \[x,y,ya\] = struc_err(fn,data,c2,c4)

As is typical in MATLAB, you should save these functions with filenames freud.m and struc_err.m, respectively. You will email me both files as attachments before 12:00 on Monday, October 24. Mail them to starr@unm.edu.

2.3 Function Generator Working Model

Build a model using cardboard, thumbtacks, etc. Make up input and output scales, like mine. Be sure and label yours with the function and your name. Submit your models at the beginning of class on Monday, October 24.