
ME 314 October 16, 2011

Function Generation using Freudenstein’s Equation

A presentation of using Freudenstein’s Equation in the synthesis
of four-bar linkages that will mechanically generate functions like
y = sinx, y = ex, y = log10 x; y = xπ, y = πx, and almost
anything else you can think of.

1 Freudenstein’s Equation

The development begins with the loop closure equation for a four-bar linkage, as shown in text Figure 10.39,
reproduced in Figure 1 below:

Figure 1: Loop closure diagram, showing ri and θi for all four links.

1.1 Loop Closure Equation

The loop closure equation simply sums the position vectors around the complete four-bar linkage, and in vector form
is given by

r1 + r2 + r3 + r4 = 0. (1)

Each link has length r and is at angle θ, hence the complex form may be written as

r1e
jθ1 + r2e

jθ2 + r3e
jθ3 + r4e

jθ4 = 0 (2)

We can expand (2) using Euler’s identity, then separate Real and Imag terms. Before doing that, notice that the angle
of link 1 is θ1 = 180◦, thus cos θ1 = −1 andd sin θ1 = 0. Finally, for conciseness, use the short form

cos θi = ci

sin θi = si

With these substitutions, equation (2) yields the two equations

−r1 + r2c2 + r3c3 + r4c4 = 0 (3)

r2s2 + r3s3 + r4s4 = 0 (4)

1



ME 314 October 16, 2011

1.2 Solving for the Link Lengths

Since the input of our mechanism will be link 2, and the output will be link 4, angles θ2 and θ4 should be preserved
in the solution, but angle θ3 should be eliminated.

Elimination of θ3 is done by solving (3) and (4) for the θ3 terms, then squaring and adding:

(r3c3)
2

= (r1 − r2c2 − r4c4)
2

+ (r3s3)
2

= (−r2s2 − r4s4)
2

One gets a nice result on the left side, but the right is messy:

r23 = f(r1, r2, r4, θ2, θ4) (5)

By using the trigonometric identity for cos(θ2 − θ4), the result can be written as

K1c2 +K2c4 +K3 = cos(θ2 − θ4) (6)

where

K1 =
r1
r4

K2 =
r1
r2

K3 =
r23 − r21 − r22 − r24

2r2r4

(7)

(8)

(9)

If we have three precision points for the linkage, we will have three corresponding values for θ2 and θ4, and can
hence write (6) three times. We will then have three equations in three unknowns and can solve for the three Ki.

Knowing the Ki then allows the calculation of the link lengths ri. Actually we can only calculate three ri...let r1 = 1
and calculate the remaining three. As the entire linkage is scaled up or down it behaves the same.

2 Application of Freudenstein’s Equation

Typically the designer will have in mind some function they wish to emulate, and a corresponding interval, such as

y =
1

x2
over the range 1 ≤ x ≤ 2 (10)

First we must select the three precision points.

2.1 Precision Point Selection using Chebyshev Spacing

The structural error in a function generator is simply the error between the mathematical function and the actual
mechanism, usually expressed as a percentage. A good choice of precision points will help reduce the structural error.

One good choice for the three precision points is using Chebyshev Spacing, which is simply a kind of equal spacing
around a circle, then projection onto the horizontal bisector of the circle (see text Figure 10.27).

With Freudenstein’s Equation we are limited to three precision points. We also have the bounds of the interval on x
as given in (10).

2.1.1 Solution for Three Precision Points

Let the minimum and maximum values of independent variable x be called xi and xf . Our three precision points
x1, x2, x3 will fit between xi and xf ; the sequence will be

[
xi x1 x2 x3 xf

]
.

2



ME 314 October 16, 2011

Text equation (10.22) gives the Chebyshev solution for N points; expressed for 3 points using my notation it is

xj =
1

2
(xf + xi)−

1

2
(xf − xi) cos

(2j − 1)π

6
, j = 1, 2, 3. (11)

For the example defined by (10), the three Chebyshev precision points I obtained are:

x1 = 1.0670

x2 = 1.5000 (12)

x3 = 1.9330

Note that with three points the middle point will always be in the center of the function interval. That is also the
point we’ll use for building the ADAMS/View model—covered later in Section 4.1.

2.2 Mapping Between y = f(x) and angles θ2 and θ4

We cannot directly “fit” the mechanism to the function given in (10). For one thing, the ranges of the independent
(x) and dependent (y) variables may be unsuitable for use as joint angles. For example, in the function of (10), are
the extrema of x (1 and 2) to be interpreted as θ2 in degrees? radians? What about θ4? The extrema of y are 1 and
0.25; will these work as joint angles for θ4?

We must solve for a linear mapping between the function y = f(x) and the joint angles θ2 and θ4. Specifically, we
must solve for scaling parameters a, c and bias parameters b, d in the linear mappings

θ2 = ax+ b (13)

θ4 = cy + d (14)

2.2.1 Initial and Final Joint Angles (starting angles and swing angles)

To find the mapping between function values x and y and joint angles θ2 and θ4 we must select the initial and final
values for θ2 and θ4. This will specify the configuration of the linkage at the extremes of motion. For our problems,
selection of these angles is arbitrary, use common sense (some experience will help).

Define these initial and final joint angles as [
θ2i θ2f θ4i θ4f

]
(15)

Units may be either degrees or radians; I will use degrees in my MATLAB function.

For the current example, I chose the following initial and final joint angles:

θ2i ... θ2f = 60◦ ... 120◦ (16)

θ4i ... θ4f = 225◦ ... 315◦ (17)

Thus I specified that link 2 has a travel of 60◦, while that of link 4 is 90◦. Both links 2 and 4 swing “symmetrically”
through vertical. This all seemed reasonable to me, at least as a starting point.

2.2.2 Matrix Solution for Mapping Parameters

Consider the mapping of (13) for independent variable x and crank angle θ2 (the mapping between y and θ4 in (14)
is handled similarly). Substitution of the extremum (max & min) values for both variables yields the two equations

axi + b = θ2i (18)

axf + b = θ2f (19)

Equations (18)–(19) can be arranged in matrix/vector form as[
xi 1
xf 1

] [
a
b

]
=

[
θ2i
θ2f

]
(20)

3



ME 314 October 16, 2011

which is exactly in the form Ax = b, where A and b are known, and x =
[
a b

]T
is the unknown. The solution is

simply

x = A−1b

Computing this is what MATLAB is made for, and the way to solve this is

>> x = A^{-1}*b; % This is the "old" way

>> x = inv(A)*b; % This is the "old" way

>> x = A\b; % This is the "new" way (preferred)

Then of course the scaling parameter a = x(1) and the bias parameter b = x(2).

As I indicated earlier, the procedure for dependent variable y and joint angle θ4 is similar. You will, of course, get
different scaling and bias parameters.

For the current example, I obtained the following values:[
a
b

]
=

[
60
0

]
,

[
c
d

]
=

[
−120
345

]
(21)

2.2.3 Creation of “Precision Joint Angles”

With the mappings between function variable space (x, y) and mechanism joint space (θ2, θ4) known, we can map
the three function precision points to corresponding precision joint angles.

From the xi of (12) and the function in (10) you can compute the corresponding yi. Then using the xi and yi you use
the mappings of Section 2.2.2 to produce the corresponding precision joint angles θ2 and θ4. This is given in the
text as Table 10.2 (p. 453).

For my example that table is shown below as Table 1. Note that the two joint angles move through their full range of
motion.

Position x θ2 y θ4

- 1 60◦ 1 225◦

1 1.0670 64.0192◦ 0.8784 239.5946◦

2 1.5000 90.0000◦ 0.4444 291.6667◦

3 1.9330 115.9808◦ 0.2676 312.8847◦

- 2 120◦ 0.25 315◦

Table 1: Function values and precision point angles.

2.3 Finding the Link Lengths ri

Now we are ready to find the four link lengths ri, which will define the mechanism.

2.3.1 Matrix/Vector Formatting and the Solution for K1...K3

The first step is to reformat equation (6) using the three precision point values from Table 1.

For convenience, I will denote the angles θ2 and θ4 corresponding to precision point i (rows 1..3 in the table) as θ2i
and θ4i, thus in this example we will have

θ21 = 64.0192◦ θ41 = 239.5946◦ (22)

θ22 = 90.0000◦ θ42 = 291.6667◦ (23)

θ23 = 115.9808◦ θ43 = 312.8847◦ (24)

4



ME 314 October 16, 2011

By substituting (22)—(24) into (6) we are doing a “three position synthesis” of this linkage. Note that we can’t use
the first and last rows of Table 1; we already used those to get the mapping (parameters a, b, c, d) between function
space and joint space (Section 2.2).

The resulting matrix/vector equation is given byc21 c41 1
c22 c42 1
c23 c43 1


︸ ︷︷ ︸

A

K1

K2

K3


︸ ︷︷ ︸

x

=

cos(θ21 − θ41)
cos(θ22 − θ42)
cos(θ23 − θ43)


︸ ︷︷ ︸

b

(25)

where c21 = cos θ21, c42 = cos θ42, etc. In (25) quantities A and b are known, and the solution for vector x is

x = A−1b, (26)

When programming this in MATLAB, the following syntax is preferred (as indicated earlier, I believe):

>> x = A^{-1}*b; % This is the "old" way

>> x = inv(A)*b; % This is the "old" way

>> x = A\b; % This is the "new" way (preferred)

2.3.2 Finding ri from K

With the three elements of K known, link lengths ri are given by equations (7)—(9). Obviously, with only three
equations we cannot solve for four quantities.

So just set r1 = 1 and solve for r2, r3, and r4. The kinematical relationship between θ2 and θ4 will be the same
regardless of the overall size of the linkage, as long as the relationship between link lengths is preserved. So the final
result can be scaled up or down to a convenient size for construction.

2.4 Next Steps

The two remaining sections are important, and will be presented in the following order:

• Constructing a model—this will probably require some iteration of the linkage synthesis; also required the
construction of measurement scales for both links 2 and 4; this is effectively a mechanical implementation of
the joint space↔ function space mapping of Section 2.2.

• Structural error—how accurate is the function generator? This will required construction of an ADAMS simulation,
archiving of the result, and MATLAB analysis of these data to determine error.

3 Constructing a Model

Before constructing a model, we need an acceptable linkage design.

3.1 Design Iteration

In the problem I assign, you will be given the following:

• Function y = f(x) and range xi ≤ x ≤ xf
• Required range of rotation for θ2 and θ4

You will be free to select both starting angles θ2i and θ4i. You will find that many starting angle selections will result
in awkward values for ri. It will be very valuable to be able to quickly compute the ri, that’s the reason for writing a
MATLAB function to obtain the solution.

5



ME 314 October 16, 2011

You will follow the flowchart shown below in Figure 2:

find three precision points

select initial and final joint angles

OK?

find link lengths ri

no

yes

build model, perform
error analysis

START

given y = f(x) and
other parameters

Figure 2: Flowchart for function generator synthesis.

3.2 An Example of Iteration

Following the previous work, I’ll assume the following:

• Function is y =
1

x2
over the range 1 ≤ x ≤ 2

• Input link 2 shall rotate 60◦

• Output link 4 shall rotate 90◦

I wrote MATLAB function freud.m, which is given as

>> help freud

[r,c2,c4] = FREUD(fn,xi,xf,t2i,t2f,t4i,t4f)

This function performs three-point kinematic synthesis of a four-bar

mechanism using Freudenstein’s Equation. Function handle "fn" computes

the mathematical function. xi and xf specify the range of the

independent variable, and Chebyshev spacing is used to determine the

three precision points for the dependent variable. Angles t2i, t2f, t4i,

and t4f (DEG) specify the limits of motion of links 2 and 4.

Returned 4x1 array r contains the link lengths, with r(1) = 1, while

returned arrays c2 and c4 contain the scaling & bias parameters (like

equation (21)) to relate [x y] space to [t2 t4] space to check the accuracy.

6



ME 314 October 16, 2011

Initial Parameters. I’ll begin by specifying initial angles such that both links swing their respective angles such that
they are vertical at the midpoint. Since the swing angles are 60◦ and 90◦, respectively, this results in initial and final
joint angles of:

θ2i = 60◦ θ4i = 225◦ (27)

θ2f = 120◦ θ4f = 315◦ (28)

Here’s how to define a “function handle” in MATLAB; the “dots” in the 1/x2 expression are to enforce an “element by
element” evaluation (which is necessary inside the freud.m function):

>> fn = @(x) 1./x.^2; % fn is now a "function handle" pointing to 1/x^2

>> xi = 1; % starting point of interval

>> xf = 2; % ending point of interval

Here’s what happens with these values:

>> r = freud(fn,xi,xf,60,120,225,315)

r = 1.0000 5.9295 1.3220 5.4793

This doesn’t look too great; links 2 & 4 are 5 inches long while the “ground” and coupler link 3 are around 1 inch
long. I’ll iterate using the starting position of link 2 and see what happens...

>> r = freud(fn,xi,xf,50,110,225,315)

r = 1.0000 3.2393 0.7870 3.2829 % These are better

>> r = freud(fn,xi,xf,40,100,225,315)

r = 1.0000 2.3482 0.6935 2.4094 % Better still

>> r = freud(fn,xi,xf,30,90,225,315)

r = 1.0000 1.9311 0.6824 1.9175 % Even better

>> r = freud(fn,xi,xf,20,80,225,315)

r = 1.0000 1.7182 0.7075 1.5855 % Still going

>> r = freud(fn,xi,xf,10,70,225,315)

r = 1.0000 1.6253 0.7624 1.3332 % Stop changing t2i now

>> r = freud(fn,xi,xf,10,70,240,330) % Now vary t4i

r = 1.0000 1.5010 1.0283 1.4411 % link 3 is a little longer...good

>> r = freud(fn,xi,xf,10,70,260,350)

r = 1.0000 1.3589 1.6715 1.9384 % Now we have fairly equal lengths. Try this.

Looks to me like the last iteration gives reasonable link lengths: they’re all similar magnitudes and link 2 is not as
long as it began. So I’ll construct this one. BTW, you can imagine how tedious this would be without a computer...

3.3 Actual Model Construction

I used corrugated cardboard for the “frame,” and manila folder stock for the links. Thumbtacks served as joints. I
measured as accurately as I could.

7



ME 314 October 16, 2011

Oh, and I scaled the whole thing up by a factor of THREE so small construction errors are not so critical. Therefore
the final link lengths are

r1 = 3.0000 in

r2 = 4.0767 in

r3 = 5.0145 in

r4 = 5.8152 in

3.3.1 Basic Linkage

I sketched the linkage in both INITIAL and FINAL positions to get an idea of the overall size, then cut a “frame”
from heavy cardboard (an HP printer box, actually).

After carefully locating points O2 and O4 on the cardboard, I measured and cut links 2, 3, and 4 from manila folder
stock. Remember to leave a little extra length on links 2 and 4 for a “pointer.” I used thumbtacks to assemble
everything.

I should have taken a photo of it at this point (before I created the “input” and “output” scales, but I forgot. Here’s
a photo of the whole thing in Figure 3. The scales are discussed in the next section.

Figure 3: Completed model including input and output x and y scales.

8



ME 314 October 16, 2011

3.3.2 Input and Output Scales

This linkage approximates the mathematical function

y =
1

x2
over the range 1 ≤ x ≤ 2

but as yet there are no “scales” for x (motion of link 2) or y (motion of link 4). The final step is to create scales which
relate the range of the function independent and dependent variables to the angles of links 2 and 4, respectively.

In a sense this a graphical version of the mapping of Section 2.2. Since that mapping is LINEAR, both input and
output scales will also be LINEAR, with equal spacing between tic marks.

All you must do is draw a scale such that the extremal angles of link 2 (10◦ and 70◦) match up with x = 1 and x = 2
on the x scale. Likewise the extremal angles of link 4 (260◦ and 350◦) match up with y = 1 and y = 0.25 on the y
scale. Then subdivide each scale into convenient divisions.

A closer view of my x and y scales are shown in Figure 4.

(a) Input x scale of 60◦ from 1 to 2.

(b) Output y scale of 90◦ from 1 to 0.25.

Figure 4: Closeup of function scales.

4 Structural Error Analysis

The function generator linkage was synthesized using only three points along the range, hence it is bound to have some
structural error (theoretical difference between the function produced by the linkage and the original mathematical
function). To find the structural error we need an EXACT model of the linkage, and a means to acquire accurate
measurements of angles θ2 and θ4.

This is a PERFECT application for an ADAMS model! We’ll use ADAMS to simulate the linkage and acquire the
data, and subsequent MATLAB processing to determine the structural error.

9



ME 314 October 16, 2011

4.1 ADAMS/View Simulation

4.1.1 The Problem

There is a “problem” when creating the ADAMS/View simulation. If you create the ADAMS/View model at the
“initial” position—usually by creating links 2 and 4, rotating them into position, then connecting them with link 3—
you will find that the length of link 3 from ADAMS/View is DIFFERENT than that from the Freudenstein analysis
in MATLAB.

The problem is that there is ALWAYS error in the linkage EXCEPT at
one of the three precision points. Therefore, one should really create the
ADAMS/View model with the linkage at one of the precision points. The logical
precision point to use is #2, which is at the midpoint of the range in x.

4.1.2 The Solution

To create the ADAMS/View model at the midpoint, do the following:

1. Find the midpoint of independent variable x: this is simply xm =
xi + xf

2
. In my example, this is xm = 1.5.

2. Using the mapping θ2 = ax+ b, find the link 2 angle midpoint θ2m.

3. Find the midpoint of dependent variable y: find this using the function you are given: ym = f(xm).

4. Using the mapping θ4 = cy+d, find the link 4 angle midpoint θ4m. It will probably not be the midpoint between
θ4i and θ4f .

5. Create links 2 and 4 in ADAMS/View, and rotate them into position using θ2m and θ4m.

6. Connect their endpoint markers with link 3. The length of this link should equal that from the Freudenstein
MATLAB analysis.

A screenshot of my ADAMS/View model is shown in Figure 5 below. The fixed marker out to the right is part of
a ANGLE MEASURE (discussed in the ADAMS Guide Section 6.2). Since this model was created at the “midpoint,”
θ2 = 40◦ and θ4 = 326.6667◦.

Figure 5: ADAMS/Viewmodel of function generator.

4.1.3 Starting the Simulation at the Initial Position

Construction of the model in this way is straightforward, however there is problem running the simulation: the linkage
is not at the INITIAL position, it’s at the MIDPOINT!. How can you start from the initial position?

The easiest way is to specity a Displacement Initial Condition when you specify the angular velocity of link 2.
After you create the joints, you Modify joint 12 to give it an angular velocity. I typically use 2π rad/sec, since then
the link will rotate 360◦ in 1 second, and simulation durations are easy to calculate.

10



ME 314 October 16, 2011

However, the window used for specifying this angular velocity also gives you the opportunity for a “Disp. I.C.”
which the key to our initial position. Simply set this Disp. I.C. to the value that—when added to the midpoint
angle of link 2—will result in the desired initial angle.

For example, my θ2m = 40◦, but I want to start at θ2i = 10◦. So I want to apply a Disp. I.C. of −30◦. See below:

When you start the simulation the linkage will instantly “snap down” to the new initial position and begin moving. If
it doesn’t, something is wrong.

You must also set the simulation time duration such that it only moves through the range of the function. In my case
I set the angular velocity of link 2 to be

ω2 = 2π rad/s (29)

so link 2 would make a full revolution in 1.00 second. Then since I wish θ2 to move through an arc of 60◦ (10◦ → 70◦)
the time duration must be

t = 1/6 (End Time or Duration) (30)

4.2 Exporting Data from ADAMS

You should have ANGLE MEASURES (discussed in the ADAMS Guide Section 6) to record angles θ2 and θ4. Although
not necessary, it might be useful to plot these angles in the ADAMS/Postprocessor window; such a plot is shown
in Figure 6. Note that this a plot in which θ4 is plotted vs θ2, rather than time t. This is a “data” plot in the
ADAMS/Postprocessor and you must click that button (after which you will be prompted for the variable to use for
the horizontal axis).

By the way, I had to add 180◦ to θ4 to get the range I wanted, since ADAMS doesn’t measure θ4 like Figure 1.

The whole purpose of creating the ADAMS/View model is to get accurate angle data from your actual synthesized
linkage. These data will then be analyzed using a MATLAB function for structural error determination.

4.2.1 Linkage Data File

You should Export the Numeric Data (just θ2 and θ4) from the ADAMS/Postprocessor to a file. The procedure for
exporting data is covered in the ADAMS Guide Section 7. When you open the file you will see the following:

11



ME 314 October 16, 2011

70605040302010

350

340

330

320

310

300

290

280

270

260

Theta 2 (deg)

Th
et

a 
4 

(d
eg

)

Figure 6: Plot of actual linkage θ4 vs θ2.

A. .plot_1.curve_1.x_data (deg)

B. .plot_1.curve_1.y_data (deg)

A B

1.000000E+001 2.597513E+002

1.012000E+001 2.602262E+002

1.024000E+001 2.606993E+002

1.036000E+001 2.611706E+002

... ...

6.976000E+001 3.501467E+002

6.988000E+001 3.502165E+002

7.000000E+001 3.502863E+002

You can see that the first column goes from 10◦ to 70◦ as expected, while the second column goes from 259.7513◦ to
350.2863◦ (instead of from 260◦ to 350◦ exactly). There is the first indication of some error.

4.2.2 Formatting for MATLAB Processing

The file shown above cannot be imported into MATLAB directly. You must first delete all the text that appears above
the numerical data; that can be done with any text editor.

4.3 Error Determination using MATLAB

From text Section 10.7,

Structural error is defined as the difference between the function produced by your synthesized linkage and
the function originally prescribed.

The function originally prescribed is simply y = f(x), in this case it is

y =
1

x2
over the range 1 ≤ x ≤ 2 (31)

The function produced by the synthesized linkage is related to the data in the file you exported (and to the plot of
Figure 6. It is related by the inverse of the mapping we found in Section 2.2. This mapping is given by (13)–(14),
repeated below:

θ2 = ax+ b

θ4 = cy + d

12



ME 314 October 16, 2011

4.3.1 Inverse Mapping

In Section 2.2 we used this mapping to go from (x, y) → (θ2, θ4), now we need to go the other way. We must take
the (θ2, θ4) data and find the corresponding (x, y) data. This shouldn’t be too difficult to figure out.

4.3.2 MATLAB Error Function

You should write a MATLAB function called ’error.m’ to calculate the percentage error over the entire range of
motion. The syntax should be

>> help struc_err

function [x,y,ya] = struc_err(fn,data,c2,c4) computes the structural

error of a four-bar function-generating mechanism. Function handle "fn"

defines the prescribed mathematical function. Parameter "data" is a

2-column array with link 2 angle (DEG) in column 1, and link 4 angle (DEG)

in column 2. Parameters "c2" and "c4" are the 2x1 arrays of scaling and

bias coefficients which map from variable space to link angle space. The

"structural error" is simply the difference between the actual function

y values and the ones from the linkage. Returned vectors "x", "y", and

"ys" are the function dependent variable, exact independent variable, and

approximate independent variable (from your linkage).

4.3.3 Application to this Example

Using the ADAMS/View model of the four-bar with link lengths of p. 8 and the initial and final angles for θ2 and θ4
from the last execution of “freud()” on p. 7, I exported the angle data from ADAMS/Postprocessor into an array
called “data.”

After editing out the text at the top of the file, I loaded it into MATLAB and began the error analysis as shown below
(comments typed in after I pasted it here):

>> [r,c2,c4] = freud(fn,xi,xf,10,70,260,350); % Do design, get c2 and c4 mapping parameters

>> load data; % Load the numeric file containing theta_2 and theta_4 from ADAMS simulation

>> [x,y,ya] = struc_err(fn,data,c2,c4); % Do error analysis using data, c2, c4

Now we have the exact (actual function) and approximate (my linkage) data.

Plot of Exact and Approximate Results. We can plot both the exact and approximate results for dependent
variable y versus independent variable x. The plot is shown in Figure 7. It looks like there is good agreement, although
some error is evident.

It is interesting to compare the plot of Figure 7 to that of Figure 6—the curves are completely different! That’s due
to the mapping between joint angle space (θ2, θ4) and function space (x, y).

13



ME 314 October 16, 2011

1 1.2 1.4 1.6 1.8 2
0.25

0.5

0.75

1

Independent variable x

D
ep

en
d
en

t
v
a
ri

a
b
le

y

 

 
Mathematical function
Linkage approximation

Figure 7: Exact and approximate behavior of y =
1

x2
over the range 1 ≤ x ≤ 2.

Plot of Percentage Error. More meaningful is a plot showing the % error of the function generator linkage. If you
have exact vector variable y, approximate vector variable ya, you know that the % error is given by

% error =
y − ya

y
∗ 100 (32)

In MATLAB, you must perform an element-by-element operation (you can’t divide one vector by another), using the
“dot” prefix like this:

perror =((y-ya)./y)*100;

The “dot” operator, when prefixed to any MATLAB basic arithmetic operation, performs the operation element-by-
element on the vector arguments. That is, it divides element i of the numerator vector by element i of the denominator
vector, and returns a result the same length as the arguments. Very useful.

The plot of % error is shown in Figure 8.

The synthesized linkage based on only three
points has less than 1.2% error over the range
of the function. Not bad!

14



ME 314 October 16, 2011

1 1.2 1.4 1.6 1.8 2
0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

1

1.2

Independent variable x

P
er

c
e
n
ta

g
e

e
rr

o
r

(y
−

y
a
)/

y

Max 1.16%

Min. 0.80%

Figure 8: Percentage error of linkage over function interval

15


