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Chapter 5 HW Solution

Problem 5.2: The reciprocating flat-face follower motion is a rise of 2 in with SHM in 180◦ of cam rotation, followed
by a return with SHM in the remaining 180◦. The prime (base) circle radius Ro = 2 in, and there is NO OFFSET.

(a) Find the displacement functions y(θ) for the full motion and plot the displacement diagram using MATLAB. Use
units of DEG for the plot.

For the rise (segment 1), from text Figure 5.14 and equation (5.18a), where L1 = 2 and β1 = π, we have

y1 =
L1

2

(
1− cos

πθ

β1

)
= (1− cos θ), 0 ≤ θ ≤ π (1)

For the return (segment 2), from text Figure 5.17 and equation (5.21a), where L2 = 2 and β2 = π, we have

y1 =
L1

2

(
1 + cos

πθ

β1

)
= (1 + cos θ), 0 ≤ θ ≤ π (2)

To get the complete displacement function one simply evaluates (1) and (2) for 0 ≤ θ ≤ π, then concatenates both
segments together (removing the common point at the segment boundary). The plot is shown below:

0 30 60 90 120 150 180 210 240 270 300 330 360
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Cam Angle (DEG)

Fo
llo

we
r D

isp
la

ce
m

en
t (

in
)

Follower Displacement for Problem 2

(b) Assuming the follower has a circular cross-section, how large must this follower radius be to accommodate the
contact point?

The distance s from the follower axis to the contact point is simply equal to y′. Therefore all we need to is to find
max(|y′|). Since both rise and return are “equal,” we can simply examine the rise. From text equation (5.18b), the
follower “speed” y′ is given by

y′ =
πL

2β
sin

πθ

β
=⇒ max|y′| = πL

2β
=
π(2)

2(π)
= 1 (3)

Therefore the follower radius must be r = 1 in (the corresponding diameter is 2 in)
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(c) Find and plot the profile that will accomplish this motion. Use 1◦ steps for cam angle θ.

I used the camprofile.m functions I wrote for this purpose. The format for this functions is:

FUNCTION [xc,yc] = camprofile(Ro,y,yp,theta,dir_flag)

where Ro is base circle radius, y and yp are displacement y and yprime, theta is cam angle (RAD), and dir flag is ’CCW’
for this cam (the only change from CW to CCW is that the x component of cam profile coordinates must be negated—this
produces a “mirror image” cam). Ironically, for the circular cam here it doesn’t matter!

The displacement is shown below: it is a circle. That is because of the Simple Harmonic Motion. The “cross” indicates
the axis of rotation. The vertical follower axis is at the top of the cam.
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Problem 5.7: This problem is similar to text Example 5.2. The motion is composed of:

1. an initial dwell

2. a full-rise motion

3. a half-return to a uniform velocity

4. a uniform velocity segment

5. a half-return back to rest

(a) Plot the position y (in), velocity ẏ (in/s), and acceleration ÿ (ft/s2) vs cam angle θ (DEG) for the complete motion.

Since this thing is said to be a “high-speed” cam we need to keep the 2nd kinematic coefficient y′′ continuous between
motion segments. The sketch on the next page shows two possibilities for segments 2 + 3 for the overall motion. I’ve
drawn in what we know: static initial dwell segment 1, and constant-velocity segment 4.
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We need to have zero acceleration and velocity at the start of segment 2, zero velocity at the end of segment 2, and
zero acceleration (and a velocity match) at the end of segment 3. Note that acceleration y′′ need NOT be zero at the
2/3 boundary). This can be achieved in two ways:

(i) Cycloidal full rise, followed by cycloidal half-return (y′′ = 0 at segment 2/3 boundary)

(ii) 8th-order full rise, followed by half-harmonic return (y′′ 6= 0 at segment 2/3 boundary)

Comparison of text Figures 5.15 and 5.16 shows that the 8th-order full rise has lower peak acceleration (or y′′) than
the cycloidal. So I’ll use the 8th-order polynomial for the full rise of segment 2, and a half-harmonic return for segment
3. Segment 5 must be a cycloidal half-return (zero acceleration at each end).

Constraints. The various motion constraints are given below. We need both the rise L and the duration β for each
motion segment.

Segment 1: We know that the initial dwell is of duration 60◦, so for segment 1 we have

β1 = 60◦ = 1.0472 rad (4)

and of course

y1 = 0 (5)

y1′ = 0 (6)

y1′′ = 0 (7)

Segments 2–3: This is an 8th-order polynomial full-rise (text Figure 5.16 and equations 5.20), which will “automat-
ically” have zero initial velocity and acceleration, and terminate with zero velocity and negative acceleration, followed
by a half-harmonic return (text Figure 5.21(a) and equations 5.26), which starts with zero velocity and negative
acceleration and terminates with zero acceleration and negative velocity.

(a) We need to match acceleration at the junction between the two. The acceleration at the end of the 8th-order
(segment 2) is

y
′′

2 (1) =
L2

β2
2

(−5.2683) = −13.1708

β2
2

(8)
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and the acceleration at the beginning of half-harmonic (segment 3) is

y
′′

3 (0) = −π
2L3

4β2
3

= −2.4674L3

β2
3

(9)

Equating these two expressions, we get

L3β
2
2

β2
3

= 5.3379 (10)

Segments 3–4: The velocity at the end of segment 3 and the beginning of segment 4 must agree. Segment 4 is
“constant-velocity” (CV) at 40 in/s for 1 in. This requires

t4 =
1 in

1

s

40 in
= 0.025 s (11)

At 400 rpm, we have

β4 = ωt4 =
400 rev

min

min

60 s

360 deg

rev
* 0.025 s = 60◦ = 1.0472 rad (12)

so

β4 = 1.0472 (60◦) (13)

Also, from the given constant velocity of -40 in/s we have

y′4 =
ẏ4
ω

= −0.9549 in/rad (14)

The velocity at the end of half-harmonic segment 3 is

y′3(1) = −πL3

2β3
which must equal − 0.9549 (15)

so by equating these we end up with

L3 = 0.6079β3 (16)

Segments 4–5: The cycloidal half-return for segment 5 (text Figure 5.23(b) and equations 5.31) will inherently have
zero final position, velocity, and acceleration. However, we must match the initial negative velocity of segment 5 to
the constant negative (-0.9549) velocity of segment 4. Skipping some of the details, this yields

L5 = 0.4775β5 (17)

Other Relationships: Some of the other constraints are the given displacement of the initial full-rise:

L2 = 2.5 in (18)

Also, since the CV return segment has a length of 1 in, we have

L3 + L5 = 2.5− 1 = 1.5 in (19)

Finally, all the cam durations must sum to 2π radians, so we have

β2 + β3 + β5 = 2π − β1 − β4 = 4.1888 rad (240◦) (20)

Equation Summary. Taking all of the “boxed” equations into account, I ended up with five equations in five
unknowns (L3, L5, β2, β3, β5). Four of the equations are linear; the fifth is nonlinear. They are not too hard to solve
manually; the results I got are:

L3 = 0.0814 in (21)

L5 = 1.4186 in (22)

β2 = 1.0850 rad (62.1084◦) (23)

β3 = 0.1339 rad (7.6721◦) (24)

β5 = 2.9709 rad (170.2195◦) (25)
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The final motion segment is MUCH longer in duration than the others—almost half the rotation angle—pretty sur-
prising. Of course I didn’t create this problem...

Displacement Diagrams. Preparing all the motions (y, ẏ, ÿ) in MATLAB (remember to multiply y′ and y
′′

by ω
and ω2) is pretty tedious, but I did it, and you should have, too. The plots are shown below, with dashed lines marking
the segment boundaries. Again, the “shape” of the resulting motion is surprising—the 3rd segment is very short, and
the 5th is quite long.
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Note that the units of acceleration are ft/s2, with the peak value being 1638 ft/s2, or about 50 g’s.

(b) Assuming the follower has a circular cross-section, how large must the follower radius be to accommodate the
contact point?

The distance from the follower axis to the contact point is simply y′, so the follower radius must be equal to max(|y′|).
From the velocity plot on the previous page, the maximum velocity |ẏ| occurs during segment 2. The displacement
function for segment 2 is given in text equation (5.20c). We must find the maximum of this equation, so differentiate it
with respect to θ and set equal to zero. However, this derivative is simply y′′, which is given in text equation (5.20c).
The roots of (5.20c) can be found using the MATLAB function roots. This yields (note that the 0th and 2nd order
coefficients are zero):

>> roots([143.4132 -571.6053 801.9465 -415.608 0 36.5853 0])

ans = 0

1.4489

1.1215 + 0.3558i

1.1215 - 0.3558i

0.5326

-0.2388

These are values of θ/β, and since 0 ≤ θ/β ≤ 1 the only admissible result is

θ

β
= 0.5326 =⇒ θ = 0.5326β2 = 0.5774 = 33.0816◦ (26)

Adding the angle of (26) to β1 yields an angle of 93.0816◦ where the segment 2 acceleration is zero, which seems to
agree with the plot above. Now evaluate y′ using the normalized angle θ/β = 0.5326 to find the maximum y′, which
is (one can use MATLAB function polyval to evaluate this polynomial)

(y′)max =
L2

β2

[
18.29265(0.2417)2 − 103.902(0.2417)4 + · · ·

]
= 4.0975 in (27)

So the follower radius must be 4.0975 inches.
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By the way, the “easy” way to do this part is to realize that from the previous figure we have (from MATLAB) the
series of samples for y′2, and can simply find the maximum value from MATLAB, like this:

In my analysis (stepsize of 1◦), the vector for y′2 is MATLAB variable yp2, and the maximum value is:

>> max(yp2)

ans = 4.0959

Due to the finite stepsize, this “approximate” value of y′ = 4.0959 is not quite as accurate as the “analytical” value of
4.0975, but it is pretty darned close (and much easier).

(c) Find and plot the cam profile. To avoid any cusps on the cam profile, the radius of curvature ρ > 0. Apply text
equation (5.33) and find the minimum base circle (Ro)min. Round (Ro)min up to the nearest inch, and use that value
for Ro.

From text (5.33), the radius of curvature of the cam profile can be written as

ρ = Ro + y + y′′, hence at ρ = 0 we have (28)

Ro = −y − y′′ (29)

The minimum value of base circle radius Ro = max(−y − y′′). Got that? Taking the easy way out—since I have the
MATLAB functions computed for all segments, just use those to find the maximum:

>> max(-y-ypp)

ans = 8.7113

Rounding up to the nearest inch, this yields a base circle radius of

Ro = 9 in (30)

The cam profile with Ro = 9 in is shown below. The minimum ρ occurs on the SW corner.
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Cam Profile of Problem 5.7 with Ro = 9 in
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(d) Using the numerical data from parts (b) and (c), construct an ADAMS model of the cam and follower. Verify
that the follower displacement, velocity, and acceleration agree with the desired behavior.

I followed the procedure I showed you in class: here is a screenshot of my cam at the point where the contact point is
right at the edge of the follower (I changed the ADAMS screen background to white):

An ADAMS plot of follower position, velocity, and acceleration is shown below. Not sure about that acceleration jitter...
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Problem 5.9: If the cam of Problem 5.7 is driven at constant speed, determine the time (duration) of the dwell and
the maximum and minimum velocity and acceleration of the follower for the cam cycle.

(a) The dwell has a angular duration of 60◦; this is the same angular duration as the constant-velocity segment. In
Problem 5.7 we found the corresponding CV segment duration; it’s the same for the dwell, i.e.

tdwell = 0.025 sec (31)

(b) To draw the plots, I had to compute MATLAB vectors for y, ẏ, and ÿ; finding the max and min of these is easy
(MATLAB “max” and “min” functions); their values are:

ẏmax = 171.5698 in/s (32)

ÿmax = 1.9660× 104 in/s
2

or 1638.3 ft/s
2

(33)

Note that these are “approximate” values in that my stepsize for computing was about 1 degree. The analytical
max/min values may be slightly different.

However, we’ve already computed the exact maximum in part (b) while finding the required follower radius. Recall
that value was

y′max = 4.0975 in (34)

So a more accurate value for maximum velocity is

ẏmax = y′maxω = 171.6342 in/s (35)

which is slightly larger.

Doing the same thing for acceleration yields:

>> poly8jerk = [860.4792 -2858.0265 3207.786 -1246.824 0 36.5853];

>> roots(poly8jerk)

ans = 1.2235

1.0000

1.0000

0.2417

-0.1438

Again, the only admissible value is 0.2417, so

>> tjmax = ans(4);

>> yppmax = polyval(poly8acc,tjmax);

yppmax = 11.2086

>> yddmax = yppmax*w^2

yddmax = 1.9667e+04

>> yddmax/12

ans = 1.6389e+03

So the revised maximum acceleration value is

ÿmax = 1638.9 ft/s
2

(36)

which is slightly larger than the previous value.
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Automotive Cam Problem
(worth another 10 points)

1. Find the β for the rise and return (will be equal).

The total β is found by determining the cam angle θ where the displacement y = 0.050 inch, then requiring the angle
from THIS point to the end to be 100◦. Like in the figure below:
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These β must be found using the MATLAB x = fzero(fn,x0) function; that was part of my MATLAB design script.
The values of β for all three displacement functions are shown in the table below:

Function β (DEG)

Harmonic 129.8791◦

Cycloidal 139.1056◦

8th order 141.8019◦

From this table it appears that the HARMONIC will have the most COMPACT motion.

2. Write a MATLAB script that does the following:

• Finds y, y′, y′′ vs θ for the complete motion

• Finds the minimum follower radius rmin = (y′ )max

• Finds the minimum base circle radius R0 = (−y − y′′ )max

The minimum follower radius rmin and minimum base circle radius R0 are shown in the table below:

Function rmin (in) R0 (in)

Harmonic 0.2772 0.0000
Cycloidal 0.3295 0.0683
8th order 0.2871 0.0000

The harmonic can have the smallest follower (all of them are similar to the one I passed around in class), and the
smallest minimum base circle radius (only one is nonzero; it’s much smaller than one would actually use)
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3. Plots of displacement, velocity, acceleration.
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Based on the continuity of the ACCELERATION plot, I would select the

EIGHTH ORDER
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