Op-amp based algebra.

Multiplication: non-inverting amp.

Addition: summing amp + inverting amp.

Subtraction: inverting amp (for one input) + summing amp.

Can implement analog computing.

Special amplifier circuits (7.18)

Instrumentation amplifier core of:

* accurate amplification of small-voltage diffs.
* in presence of huge CM signal

* avoid loading the transducer by keeping current thru it small as possible

Stage 1: increase transducer

\[R_2 = R_3 \]
\[R_4 = R_5 \]
\[R_6 = R_7 \]

\[e_{o} \]

Input stage (voltage followers \(\omega/k_1 \rightarrow \infty \))

\[G = \left(1 + \frac{2R_2}{R_1} \right) \frac{R_6}{R_4} \]

\[e_o = G \left(e_{i1} - e_{i2} \right) \]
Additional uses of op amps (7.22, 7.23)

Filtering (7.22)

Passive filter network:
- built from resistors and capacitors
- do not have explicit inductive characteristics (unlike LC filters)

Examples of active filters

Low-pass filter: suppresses high-frequency components
\[\frac{V_o}{V_i} [\text{dB}] \]

\[f_c - \text{cutoff frequency} \]

RC low-pass filter:
\[f_c = \frac{1}{2\pi RC} \]

High-pass filter: suppresses low frequency
\[\frac{V_o}{V_i} = \frac{1}{1 + \left(\frac{f}{f_c}\right)^2} \]
Corresponding RC filter would be...
\[v_e = i_e R C_e = 0 \]

Band-pass filter (chops out low and high freq.)

\[\frac{V_o}{V_i} \quad [\text{dB}] \]

RC analog
\[+ \cos \left(\frac{t}{T} \right) \]

What's good about active filters compared w/RC or LC?

Roll-off: \(\frac{\Delta f}{\Delta f} \) in terms of \(\frac{dB}{\text{octave}} \) or \(\frac{dB}{\text{decade}} \)

Decade = frequency change by a factor of 10
Octave = \(\frac{1}{\text{decade}} = \frac{1}{2} \)

Roll-off for RC filters: \(\approx 6 \frac{dB}{\text{octave}} \)
active filters: \(\approx 80 \frac{dB}{\text{octave}} \)

Differentiators & Integrators (7.23)
Addition to "op amp algebra."

- Responds to rate of change of input
- Time history of input
Op. amp. differentiator

Currents through \(R \) and \(C \) are equal (impedance of op amp is huge):
\[e_- = e_+ = 0. \]

\[C \frac{\text{d}}{\text{d}t} (e_i - 0) = \frac{\text{R} \cdot e_0}{\text{R}}. \]

\[\downarrow \]

\[e_o = -RC \frac{\text{d}}{\text{d}t} e_i. \]

Output = time derivative of input \(\times \text{const} \)

Op. amp. integrator

From resistor and capacitor current equality (again),
\[\frac{e_i}{\text{R}} = -C \frac{\text{d}}{\text{d}t} e_0. \]

Integrate:
\[e_0 = -\frac{1}{\text{RC}} \int e_i \, \text{d}t + \text{const}. \]

\(\text{Re} \) - may be placed in parallel \(\text{w}/C \).

\(\text{huge resistor} \).

\(\times \text{Prevents drift in capacitor charge over long-time intervals} \).

\(\times \text{Restricts signal frequencies to } f \gg 20\text{kHz} \).