
  

IV. Compressible flow of inviscid 
fluids

● Governing equations for n = 0, r  const:
∂ρ
∂ t

+∇⋅(ρu )=0

ρ
∂u
∂ t

+ρ (u⋅∇ )u=−∇ p

ρ
D e
D t

=ρ
∂ e
∂ t

+ρ (u⋅∇ ) e=−p∇⋅u+∇⋅(k ∇ T )

p= p(ρ , T ) , e=e (ρ ,T )



  

Alternate forms of energy equation

Equation for enthalpy h = e + p/r

ρ
∂ h
∂ t

+ρ (u⋅∇ ) h=∂ p
∂ t

+(u⋅∇ ) p+∇⋅(k ∇ T )
(derivation – similar to what we did in Ch. 10)

Equation for negligible heat conduction and 
perfect gas
Start with 

ρ
D e
D t

=−p ∇⋅u



  

For perfect ideal gas,

e=e(T )=cv T , p=ρR T

In this case
De
Dt

=
De
DT

DT
Dt

=cv
DT
Dt

From continuity equation,

∇⋅(ρu)=∇ρ⋅u+ρ∇⋅u=−
∂ρ
∂ t

ρ∇⋅u=−(∂ρ
∂ t

+(u⋅∇ )ρ)=−
Dρ
Dt



  

Insert

Into the energy equation -

cv
DT
Dt

=
p
ρ

D ρ
Dt

∇⋅u=−
1
ρ

Dρ
Dt

De
Dt

=cv
DT
Dt   and

Recall that (for ideal gas) T = p/(rR)

cv
D
Dt ( p

ρR)= p
ρ

Dρ
Dt

cv

R
1
ρ2(ρ Dp

Dt
−p Dρ

Dt )= p
ρ

D ρ
Dt



  

cv

R
Dp
Dt

=
cv

R
p
ρ

D ρ
Dt

+ p
ρ

Dρ
Dt

Multiply both parts by R/(cv p)
1
p

Dp
Dt

=
1
ρ

Dρ
Dt

+
R
cv

1
ρ

Dρ
Dt

=
1
ρ

Dρ
Dt (1+

R
cv)

Note that R = cp - cv, so

1+ R
cv

=
cv+c p−cv

cv
=

c p

cv
=γ

1
p

Dp
Dt

=
γ
ρ

Dρ
Dt

With that, 
D
Dt

(log p−logργ)=0, or



  

Integrate for the same fluid volume:
p
ργ=const

Isentropic law (inviscid fluid, no heat transfer)



  

11.1. Propagation of infinitesimal 
disturbances 

(a.k.a. linear acoustics)
● Assumptions

● 1D setting (x-axis only)
● Perfect gas initially at rest
● No heat conduction
● Small disturbance propagates in x-direction

● Governing equations
● Continuity (1D):

∂ρ
∂ t

+∇⋅(ρu )=0 →
∂ρ
∂ t

+ ∂
∂ x

(ρu )=0



  

● Momentum (1D)

ρ
∂u
∂ t

+ρ (u⋅∇ )u=−∇ p →
∂ u
∂ t

+u ∂ u
∂ x

=−
1
ρ

∂ p
∂ x

● Energy (perfect gas, no heat transfer)
p
ργ=const

For isentropic gas, p = p(r), so
∂ p
∂ x

=
dp
d ρ

∂ρ
∂ x

Rewrite continuity and momentum with this - 

∂ρ
∂ t

+u ∂ρ
∂ x

+ρ
∂u
∂ x

=0 ∂u
∂ t

+u ∂u
∂ x

+
1
ρ

dp
d ρ

∂ρ
∂ x

=0



  

Assumptions for linearization
Hydrostatic value

p= p0+p '
ρ=ρ0+ρ '
u=u '

∂
∂ t (ρ0+ρ ' )+u ' ∂

∂ x (ρ0+ρ ' )+(ρ0+ρ ' ) ∂ u '
∂ x

=0

Assume perturbed (') values to be small, plug into 
governing equations...

r0 = const r0 = const

Product: 2nd order

Product: 2nd order

∂ρ '
∂ t

+ρ0
∂u '
∂ x

=0



  

∂u '
∂ t

+u ' ∂u '
∂ x

+1
ρ

d ( p0+p ' )
d ρ

∂ (ρ0+ρ ' )
∂ x

=0

Note that
d ( p0+ p ' )

d ρ
= d p

d ρ ∣
p=p0,ρ=ρ0

+ p' d 2 p
d ρ2 ∣

p=p0,ρ=ρ0

+…

Product: 2nd order Not a function of x

Product: 2nd order

∂u '
∂ t

+
1
ρ0

d p
d ρ∣0 ∂ρ '

∂ x
=0

1
ρ=

1
ρ0+ρ '

=
1
ρ0

1
1+ρ ' /ρ0

=
1
ρ0(1−

ρ '
ρ0

+…)
Thus after linearization



  

Take second equation (momentum), multiply by 
r0, differentiate in x 

∂2ρ '
∂ t 2 +ρ0

∂2 u '
∂ x ∂ t

=0

Differentiate first equation (continuity) in t

ρ0
∂2 u '
∂ t ∂ x

+ d p
d ρ∣0

∂2ρ '
∂ x2 =0

Subtract the two equations to eliminate the cross-
differential term

∂2ρ '
∂ t 2 − d p

d ρ∣0

∂2ρ '
∂ x2 =0



  

Now differentiate continuity in x 
∂2ρ '
∂ t ∂ x

+ρ0
∂2 u '
∂ x2 =0

...and momentum in t
∂2u '
∂ t 2 + 1

ρ0

d p
d ρ∣0 ∂2ρ '

∂ x∂ t
=0

Multiply first equation by...
1
ρ0

d p
d ρ ∣0

Then subtract first equation from the second



  

∂2u '
∂ t 2 − d p

d ρ ∣0 ∂2 u '
∂ x2 =0

a0=√ dp
d ρ∣

0

Let 

Equations can be rewritten as
ρ ' tt−a0

2ρ ' xx=0
u ' tt−a0

2 u ' xx=0
D'Alembert's equations
(wave equations)

Speed of sound

General solution for r' (same form for u')
ρ '= f ( x−a0 t )+g (x+a0 t )

Wave traveling 
right

Wave traveling 
left



  

For this theory (linear acoustics) to work, must 
have:

ρ '
ρ0

≪1, p '
p0

≪1, u '
a0

≪1

Speed of sound in perfect gas – evaluate using 
isentropic energy equation

p
ργ=

p0

ρ0
γ , p=ργ p0

ρ0
γ

dp
d ρ

=γργ−1 p0

ρ0
γ =

γ
ρ ργ p0

ρ0
γ =

γ
ρ p

Also for ideal gas p = rRT, so 
dp
d ρ

=
γ
ρ p=γ R T



  

Thus for the speed of sound we can write 

a0=√γ RT 0=√γ
p0
ρ0



  

11.2. Propagation of finite disturbances

Start with governing equations from previous 
section before linearization...

p
ργ=const

∂ρ
∂ t

+u ∂ρ
∂ x

+ρ
∂u
∂ x

=0

∂u
∂ t

+u ∂u
∂ x

+
1
ρ

dp
d ρ

∂ρ
∂ x

=0

From previous section, u = u(r), p = p(r) only 
(both also depend on initial conditions)



  

If u = u(r), we can also rewrite that as r = r(u)

Assuming the same dependence for finite-
amplitude case (r = r(u), p = p(r)), use chain rule 
for derivatives in governing equations
∂ρ
∂ t

=
d ρ
d u

∂ u
∂ t

∂ρ
∂ x

=
d ρ
d u

∂u
∂ x

∂ p
∂ x

=
d p
d ρ

d ρ
du

∂ u
∂ x

Continuity equation becomes...
d ρ
d u

∂u
∂ t

+u d ρ
d u

∂u
∂ x

+ρ
∂ u
∂ x

=0

d ρ
d u (∂u

∂ t
+u ∂u

∂ x )+ρ
∂u
∂ x

=0



  

For the momentum equation...
∂u
∂ t

+u ∂u
∂ x

+
1
ρ

dp
d ρ

d ρ
d u

∂ u
∂ x

=0

∂u
∂ t

+u ∂u
∂ x

=−1/(d ρ
d u)ρ ∂ u

∂ x
=−

d u
d ρ

ρ
∂ u
∂ x

From continuity,

Plug that into momentum, move pressure term to 
the right, lose the - signs

ρ
d u
d ρ

∂ u
∂ x

=
1
ρ

dp
d ρ

d ρ
d u

∂u
∂ x

ρ
d u
d ρ

=
1
ρ

dp
d ρ

d ρ
d u



  

(d u
d ρ)

2

=
1
ρ2

dp
d ρ

d u
d ρ

=±1
ρ √ dp

d ρ

Let
a=√ dp

d ρ
Then

d u
d ρ

=±
a
ρ , d u

a
=±

d ρ
ρ

Use these expressions to alter the momentum 
equation...

∂u
∂ t

+u ∂u
∂ x

+
1
ρ

dp
d ρ

d ρ
d u

∂ u
∂ x

=0

a2 ±ρ
a

For small amplitude, a  a0 
(speed of sound)



  

∂u
∂ t

+u ∂u
∂ x

+a ∂ u
∂ x

=0

For a forward-propagating wave (  +),

Rewrite this as
∂u
∂ t

+(u+a) ∂ u
∂ x

=0

A general solution of this equation (forward wave) 

u= f ( x−(u+a) t )

Any differentiable 
function (particular 
solution – from IC)

Functions of x,t



  

Use the polytropic equation to rewrite a in terms 
of speed of sound a0

p
ργ=

p0

ρ0
γ

d p
d ρ

= d
d ρ(ργ p0

ρ0
γ)=γργ−1 p0

ρ0
γ

a=√ d p
d ρ

=√γργ−1( p0

ρ0
γ )

1/2

=√γ
p0
ρ0 ( ρ

ρ0 )
γ−1

2

From previous section,

a0=√γ
p0
ρ0



  

a=a0( ρ
ρ0 )

γ−1
2

Thus

Recall that we had...
d u
d ρ

=±
a
ρ

For a forward wave (+),
d u=a d ρ

ρ
Rewrite this using the expression with a0

d u=a0( ρ
ρ0 )

γ−1
2 d ρ

ρ =
a0

ρ0

γ−1
2

ρ
γ−1

2 −1
d ρ



  

d u=
a0

ρ0
(γ−1)/2 ρ(γ−3 )/2 d ρ

Integrate this in r to get

u= 2
γ−1

a0

ρ0
(γ−1)/2 ρ(γ−1)/2+const

When r  r0, u  0:

0=
2

γ−1
a0+const

Thus 

const=−
2

γ−1
a0



  

Rewrite the expression for u

u= 2
γ−1

a0

ρ0
(γ−1)/2 ρ(γ−1)/2− 2

γ−1
a0

u= 2
γ−1(a0( ρ

ρ0 )
γ−1

2 −a0)
a=a0( ρ

ρ0 )
γ−1

2

Recall that

Thus
u=

2
γ−1 (a−a0)



  

Wave
speed

The general solution was of the form...
u= f ( x−(u+a) t )

For wave speed of the forward wave, 

U=u+a=u(1+ γ−1
2 )+a0=a0+

γ+1
2

u

a=
γ−1

2
u+a0

The same expression with respect to a:

The faster the local speed, the faster the wave 
wants to go!



  

Evolution of a finite-amplitude velocity 
disturbance

x

ut = t1



  

Evolution of a finite-amplitude velocity 
disturbance

x

ut = t2



  

Evolution of a finite-amplitude velocity 
disturbance

x

ut = t3



  

Evolution of a finite-amplitude velocity 
disturbance

x

ut = t4

Oops... multivalued velocity 
and pressure... cannot have 
this!



  

Note: this problem arises only for a positive-
pressure perturbation (a negative-pressure finite 
perturbation, a.k.a. rarefaction wave, will disperse 
nicely)

∇⋅



  

What really happens to finite-strength positive-
pressure perturbation in gas...

p = p0, r = r0, u = 0

S
ho

ck
 fr

on
t

p = ps, r = rs, u = us

Piston velocity
(less than U)

Shock front speed U

Mach number
M = U/a0 > 1

Here continuum 
approximation breaks 
down!

Ernst Mach
1838-1916



  

Explosion of Tsar-Bomba (AH602, ~60 megaton 
thermonuclear device), Kurchatov, Khariton, 
Sakharov



  

Explosion of Tsar-Bomba (AH602, ~60 megaton 
thermonuclear device), Kurchatov, Khariton, 
Sakharov



  M65 atomic cannon test (Upshot-Knothole test series, 1953)



  M65 atomic cannon test (Upshot-Knothole test series, 1953)



  

11.3. Rankine-Hugoniot equations

Pierre Henri 
Hugoniot 
(1851-1887)

p = p2, r = r2, u = u2
S

ho
ck

 fr
on

t
p = p1, r = r1, u = u1

Reference frame moves
with shock front (discontinuity in 
the framework of continuum 
theory, width ~ 1 mean free path 
of a molecule)

Conservation equations

ρ1 u1=ρ2u2 Mass

ρ1 u1
2+ p1=ρ2 u2

2+p2 Momentum

Momentum fluxes

Momentum jump on the interface due to pressure difference

Normal shock
(as opposed to 
crazy mad shock)

(velocity normal 
to shock front)



  

Energy equation 

Rewrite enthalpy per unit mass cpT using ideal 
gas equation p = rRT:

c p T=c p
p

ρ R
=c p

p
ρ(c p−cv)

=
c p /cv

c p/cv−1
p
ρ = γ

γ−1
p
ρ

u1
2

2
+c p 1T 1=

u2
2

2
+c p 2 T 2

With that, energy equation becomes

u1
2

2
+

γ
γ−1

p1
ρ1

=
u2

2

2
+

γ
γ−1

p2
ρ2



  

=

(mass equation)

ρ1 u1=ρ2u2ρ1 u1
2+ p1=ρ2 u2

2+p2

Divide momentum equation by mass equation...

u1+
p1

ρ1 u1
=u2+

p2

ρ2u2

u2−u1=
p1

ρ1 u1
−

p2

ρ2u2

Rearrange
=

p1−p2

ρ1 u1

Multiply this by (u2+u1)

u2
2−u1

2=
p1− p2

ρ1 u1
(u2+u1)=

p1−p2

ρ1 (u2

u1
+1)



  

Divide mass equation by r2u1 
ρ1
ρ2

=
u2

u1

Use this to replace u2/u1 in energy equation

u2
2−u1

2=
p1− p2

ρ1
(ρ1
ρ2

+1)=( p1− p2)( 1
ρ2

+ 1
ρ1)

Rewrite an earlier form of energy equation to get

u2
2−u1

2=2( γ
γ−1

p1
ρ1

− γ
γ−1

p2
ρ2)



  
From energy eq.

2 γ
γ−1 ( p1

ρ1
−

p2
ρ2 )=( p1−p2)( 1

ρ2
+ 1

ρ1)
With a little tidying up...

Multiply by r2

2 γ
γ−1 (p1

ρ2
ρ1

− p2)=( p1−p2)(1+
ρ2
ρ1 )

Collect terms with density ratio, solve for it

ρ2
ρ1

=
u1

u2
=

p1+
γ+1
γ−1

p2

γ+1
γ−1

p1+ p2

Rankine-
Hugoniot 
equations



  

This part cannot be 
realized - violates 2nd 
law of 
thermodynamics

11.4. Conditions for normal shock waves 

Across the shock, the flow is not isentropic

log
p2

p1

log
ρ2
ρ1

p
ργ=const



  

With more algebra (using the expression we had 
for velocity difference...)

u2 u1=a*
2

Prandtl-Meyer relation

We will be able to use it, but first... 
How exactly does the second law of 
thermodynamics apply at the shock front?



  

Calorically perfect gas (Appendix E.5)
Perfect gas equation of state 

C v=[ dq
dT ]v

=
∂ e
∂T

=
∂ h
∂T

+[ ∂ h
∂ p

−v ][ ∂ p
∂T ]v

Specific heat at constant pressure

Specific heat at constant volume

C p=[ dq
dT ]p

=
∂ h
∂ T

=
∂ e
∂T

+[ ∂e
∂ v

+p][ ∂v
∂ T ]p

p=ρR T

(Enthalpy h = e + pv)



  

Perfect gas equation of state 
p=ρR T ⇔ pv=RT

pdv+vdp=R dT
dh=d (e+pv )=de+pdv+vdp

dh=de+RdT
∂h
∂T

−
∂ e
∂T

=R

C v=
∂ e
∂T

, C p=
∂ h
∂T

From previous slide,

Thus
R=C p−C v



  

e=e(T )=∫C v dT+const
Can further show that for perfect gas

h=h (T )=∫C p dT +const
Gas is called calorically perfect if

C p=const , C v=const
Then for calorically perfect gas

e=e(T )=C v T+const

h=h (T )=C pT +const



  

Second law of thermodynamics 
(Appendix E.8) Uniqiely determined by 

the state of the system

Entropy s – thermodynamic variable of state

Q=∫A

B
dq

Introduce entropy s so that the change in s 
between equilibrium states A and B is 

Consider a system in equilibrium state A
By adding heat Q to the system, we move it to 
another equilibrium state B

Evaluated for reversible 
process, i.e. change is so 
slow that system remains in 
thermodynamic equilibrium

sB−s A=∫A

B dq
T



  

Statement of the second law of 
thermodynamics
For any spontaneous process, the entropy 
change is non-negative 

Evaluated for reversible 
processsB−s A⩾∫A

B dq
T

Consider calorically perfect gas

sB−s A=[C p logT −Rlog p ]B−[C p logT −R log p]A



  

Now let states 1 and 2 correspond to ideal gas 
before and after the shock, then

s2−s1=Δ s=
=[C p log T−R log p ]2−[C plog T−R log p]1=

=C p log
T 2

T 1
−R log

p2

p1

For ideal gas, temperature T = p/(rR), so

Δ s=C plog
p2ρ1

p1 ρ2
−R log

p2

p1

Δ s=C p(log
p2

p1
+log

ρ1

ρ2)−Rlog
p2

p1



  

Δ s=(C p−R) log
p2

p1
−C p log

ρ2

ρ1

Δ s=C v log
p2

p1
−C p log

ρ2

ρ1

Δ s
C v

=log
p2

p1
−γ log

ρ2

ρ1

State 2 can be reached from state 1 by some kind 
of quasi-equilibrium, slow isentropic (I) process, 
then s2 = s1 and 

Δ s
C v

=0=log
p2

p1
−γ log[ρ2

ρ1 ]I



  

We arrive at state 2 by shock acceleration (nearly 
instant, thus definitely not isentropic) – use 
subscript RH

Δ s
C v

=log
p2

p1
−γ log[ρ2

ρ1 ]RH

From previous slide, use 

log
p2

p1
=γ log[ρ2

ρ1 ]I

Δ s
C v

=γ log[ρ2

ρ1 ]I
−γ log[ρ2

ρ1 ]RH



  

Here Ds would be 
negative

log
p2

p1

log
ρ2
ρ1

p
ργ=const

From second law of thermodynamics,

Δ s=C v γ(log[ρ2

ρ1 ]I
−log[ρ2

ρ1 ]RH)>0



  

Some interesting corollaries
A shock wave is thermodynamically realizable if

log
ρ2
ρ1

⩾0, log
p2

p1
⩾0

Recall that, from Rankine-Hugoniot equations,
ρ2
ρ1

=
u1

u2

Thus ρ2
ρ1

=
u1

u2
⩾1



  

Definition for speed of sound from acoustics 
section

a0=√γ RT 0=√γ
p0
ρ0

Let a2 = gp/r, use that to rewrite energy equation 
yet again

u*
2

2
+

a*
2

γ−1
=a*

2(1
2
+

1
γ−1)= γ+1

2(γ−1)
a*

2

Use * subscript to denote the case when u = a 
(M = 1, sonic flow) and 

u1
2

2
+

a1
2

γ−1
=

u2
2

2
+

a2
2

γ−1



  

With more algebra (using the expression we had 
for velocity difference...)

u2 u1=a*
2

Prandtl-Meyer relation

From the second law of thermodynamics, we had
ρ2
ρ1

=
u1

u2
⩾1

Rewrite this as 
u1

2

u1 u2
⩾1 or

u1
2

a*
2 ⩾1



  

Earlier we had energy equation in the form...

u*
2

2
+

a*
2

γ−1
=

γ+1
2(γ−1)

a*
2

Take energy equation in the form 

u1
2

2
+

a1
2

γ−1
=

u2
2

2
+

a2
2

γ−1
We formally introduced  case from the right-
hand side of the same energy equation if M = 1,  
u = a = u = a

u1
2

2
+

a1
2

γ−1
=

γ+1
2(γ−1)

a*
2



  

Divide both parts by u1
2

a*
2

u1
2 =(1

2
+

1
M 1

2(γ−1))2(γ−1)
γ+1

M 1
2

1
2
+

a1
2

u1
2

1
γ−1

=
γ+1

2(γ−1)
a*

2

u1
2

a*
2

u1
2 =( M 1

2(γ−1)+2
2 M 1

2(γ−1) )2(γ−1)
γ+1



  

u1
2

a*
2 =

M 1
2(γ+1)

M 1
2(γ−1)+2

⩾1

Flip it over...

M 1
2(γ+1)⩾M 1

2(γ−1)+2
M 1

2⩾−M 1
2+2

M 1⩾1

Moreover, from Prandtl-Meyer relation it follows 
that

M 2⩽1


