10. Buoyancy-driven flow

e For such flows to
occur, need:

« Gravity field

« Variation of density
(note: not the same as
variable density!)

e Simplest case:

* Viscous flow,
iIncompressible fluid,
density-variation
effects only present in
body force term
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Archimedes, c. 287 BCE —c. 212 BCE



 Natural convection e Forced convection

« Movement is due to e Movementis due to
buoyancy other forces
* Important forces: * Important forces:
- Viscous - Viscous
- Buoyancy - Buoyancy
- Other
* Density variation e Density - unknown

mostly relevant for
body-force term only

* Need energy equation and equations of state to
close the system!



10.1. Boussinesq approximation

* Incompressible Navier-Stokes
with gravity as body force

V-u=0
ou
O ’y | p(u-V)uz—Vp—l—quu—pgez
] Joseph Valentin
 Hydrostatics (u=0,p=p, p=p,): Boussinesg

(1842-1929)
O:_V Po—Pyg €,
* Buoyancy-driven convective motion:

u=u*p=pip*, p=p,tp°



Plug expressions for p, p, u into momentum
equation:

(po +X) aa”t | (pO+X)(u*-V)u*=

—V(p*+ po)wvzu*—(pﬁp*)g e,
Throw out hydrostatic terms

Linearize, assuming

PP , P=PeTP =P
Drop * and , replace p™ = Ap

9,
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Boussinesq approximation to momentum equation




10.2. Thermal convection

Fluid density change due to small temperature
variations:

p=po(1—ﬁ\(T—To)) o
Thermal expansion coefficient
(validforp~p, T~ T)

For ideal gas, 3 =1/T,, so Boussinesq equation
becomes

E;L; | p(u.V)uZ—Vp—l-uvzu—pgﬁ(T—TO)ez

p IS not variable, but still need energy equation!

P



Note: Boussinesq approximation assumes
incompressible fluid of constant density in
momentum and continuity equations, but body
force is due to density variation!
(self-contradictory assumption, but works quite
well for finite variations of density with

temperature!)



10.3. Boundary-layer approximation

Away from surface:
T=T,
U=0

On the surface:
T =T (or other condition)
U=0



BL thicknesses: thermal 6..and velocity o

* Three possible cases (both for natural and
forced convection):

e 0.<<0:velocity in thermal BL small, heat
transfer dominated by conduction, energy
equation uncouples

« 0.>>0: temperature gradient in velocity BL
small, can assume it plays negligible role,
energy equation uncouples

0.~ 0: have to solve energy equation with

momentum and continuity to get profiles for
natural convection (Prandtl number ~ 1!)



Consider 6.~ 6
Full energy equation (1.14)
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Dissipation function

Rewrite in terms of enthalpy 4 = e + p/p (p = const)



Ot ox,
pgzilﬁij kaTj @
Open brackets...
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For incompressible fluid, this term is zero! (continuity)
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pressure

Terms of same order
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Equations we need to solve...

8T 6T U 8p| 0°T
K
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k

Thermal diffusivity K=—"—
pc,
For @, assume it's negligibly small (works for low

viscosity, high Re - and all boundary layer flows
are high-Re flows!)
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10.4. Vertical isothermal surface

Away from surface:
T=T,

U=0

p = const

On the surface:
=T,
u=>0



Thermal BL equations (zero pressure gradient)
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Solution approaches

No length scale in x-direction — similarity
solution

Can be simplified with polynomials (2™ order
for 7, 3" for u) - Pohlhausen

Dimensionless parameters

Prandtl
Nusselt Grashof number
number Length number
Convection / scale \
e 3
coefficient \hl g l (TS _TO) v
Nu — Gr — Pr==
k 2 *
v T,
Ra=Pr-Gr

Rayleigh number



Physical meaning of dimensionless
characteristics of thermal convection

Nu — how much more efficient convection (/) is
when compared to conduction (k); sometimes
referred to as "dimensionless convection
coefficient”

Gr — non-dimensional temperature differential
driving the convection

Pr — measure of respective importance of
mechanical (v) to thermal (k) dissipation

Ra — dimensionless buoyancy force



Pohlhausen's result for thermal convection in air
(Pr~0.7)

Q:S Gr, § o 114
X 4 ’
Nu~0.359 Gr'"
Thermal BL stability
T —T,.|x°
Raxjczgﬁ( : O) ~10’
VK

Above Rax,c — transition to turbulence!



10.7. Stability of horizontal layers

T=T, p=p,

jBuoyancy
X

>
7

Z

yv=h

TVZTV1 p:p1

T <T, (hot above cold) — stable (and stably

stratified) horizontal thermal layer, heat transfer —
by conduction only

T, > T, (cold above hot) — for some AT, unstable
stratification leads to convection?



Governing parameter

_gﬁ(T1_T2)h3
B VK

Ra

Low Ra — no movement, heat transfer by
conduction only (viscous forces >> buoyancy)

Consider small perturbation (velocity and
temperature, 3D, time-dependent), look for Ra
when any such perturbation can start growing

Thermal convection should start at
Ra > Rac =1708

Great agreement with experiment!



