ll. ldeal — fluid flow

* |deal fluids are
* Inviscid
* Incompressible
 The only ones decently understood mathematically

« Governing equations

V-u=0

Continuity

| (u-V)uz—%Vp—l—f

Euler

ou
Ot




BOU ndary C()nditions Normal to surface

Y\ Free-slip
u-n=U-n (velocity is parallel
# to surface)

Velocity of surface

Potential flow (special case)
u=VvVo (u=0o0e/ox,v=0oep/oy,w=0p/0z)
Potential flow is irrotational
Continuity equation for potential flow
Ve =0

Continuity equation (with boundary conditions)
can be solved alone for velocity



Then plug ¢ into momentum equation (Bernoulli
form) to solve for pressure



4. 2D potential flows

4.1. Stream function

» 2D ideal continuity equation
ou O0v

| =0
ox Oy
* Velocity potential ¢
9,
=29 00
OXx 0y

* Introduce streamfunction y (counterpart of
potential) so that

_ovy 0y

v:

0y’ 0x

u



Streamfunction satisfies continuity equation by
construction

oy oy 0
oxdy O0yox
Streamfunction exists for any ideal 2D flow

Before going further, consider vorticity in 2D flow

k
0
o=V Xu=det
0z
w

o))

]
0
0Xx

)




Streamfunction satisfies continuity equation by
construction

oy oy 0
oxdy O0yox
Streamfunction exists for any ideal 2D flow

Before going further, consider vorticity in 2D flow

I J k
0 O
— p— - - O
o=V Xu=det 9x Dy
U v 0




Vorticity in 2D flow For 2D,

effectively
(av au) / a scalar
w=k

=kw
ox Oy
Now consider an irrotational 2D flow
o= ov Ou 0
ox Oy

Express velocity in terms of streamfunction

_ o aw) o fav)_
m_ﬁx( Gx) Gy(ﬁy)_o




Properties of streamfunction

* Streamlines are lines of y = const

* Difference in the value of y between two
streamlines equals the volume of fluid flowing

between them

* Streamlines y = const and potential lines

¢ = const are orthogonal at every point in the
flow



Why y = const is a streamline

5)

adx

d opyox OYoy
d ds = ds=—vdx+ud
V= ds ° (Gxas GyGS)S rarTHey

dy dx

V u

Streamline
equation!

d =0 means vdx=udy,




Flow rate between two streamlines

Direction along AB:
ds = (dx,dy)

Direction normal to AB:
v=y, dn = (dy,-dx)

A Volume flow rate

Q=fj u-ndszfj u-dnzfi udy—fj vdx

B
Q:fA d Y=y, =,



Orthogonality between streamlines and potential
lines

Along a streamline dy=—vdx+udy=0

Along an isopotential line (¢ = const)...

dcpza—(pdx | 0w dy=udx+vdy=0
ox oy

Normal to streamline: (-v, u)

Normal to isopotential line: (u, v)

They are orthogonal: (-v, u)-(u, v) =0



4.2. Complex potential and velocity

 Complex variable z = x+iy
* Function of a complex variable

Fz)=@xy) tiy(xy)

» Cauchy-Riemann condition for function of a
complex variable to be holomorphic*

09 _0y. 09__0y.
Ox Oy Oy 0x

Holomorphic function — complex-valued function of a complex
variable which is differentiable in a neighborhood of every point
within its domain




Complex potential constructed from velocity
potential and streamfunction
Fz)= @ (xy) +iyxy)

Cauchy-Riemann condition satisfied by
construction

Advantages of using complex potential

* If ¢ and y are the real and imaginary parts of
any holomorphic function, V’¢ =0 and Vv =0
automatically

 Complex velocity w =dF/dz = u - iv — directly
related to flow velocity



Magnitude of complex velocity
w¥w =W+ ivu—iv)=u+ =uu=Ve-Vo

Polar coordinates in complex plane

Ay

X

>

x +iy =7 (cos O +isin Q) =re”

u=1u cos@—uesinG
r

V=1u sin9+uecosﬁ
v

— -7 -16
w=(u -iu)e"




4.3. Uniform flow

_dr’ _
dz

u=Ccosa, v=Csimnao

Ce "=Ccosa—iCsin o




4.4. Source, sink, and vortex
F(z)=Clogz=Clog(rée’)=C(logr+i0)
First, let C be real and positive
¢=Clogr, py=C0

dF C C i
AY W(Z)
X / dz z 1
\\\ / _ C
\ /
\\\ / u.——, MGZO
N o X |4
TN
// N
y NN Source atz=0
/ \




Source strength (discharge rate)

27

27
m=f0 u.rd= CdOo=2nC

0

Complex potential of a source of strength m at
Z — Z
0
m
Flz)=—1Iloglz—
(2)=5"log( 2,

Complex potential of a sink of strength m atz=z_

by F(z)= ZmT[ log(z—2z,)

N

N
A N~

> X




Now consider a purely imaginary constant in the
logarithmic potential:

F(z)=—iClogz=—iClog(re’)=—iClogr+C8
¢=C0, p=—Clogr
dF C C _io

- =] —=—] —¢
dz z e
AY C

u,=0, ug=—

Z

w(z)




Vortex strength (circulation)
27
F=¢ u-dl=f0 ugrd0=2nC
L

Complex potential of a vortex with circulation I' at
Z — Z
0

F(z)==i>—log(z—z,)

27
Note 1.z=z Is a S//\gularity (e, > )

Note 2. This flow field is called a free vortex:

@udl 0

" «— Any contour not
including z_



4.5. Flow In a sector
F(Z)z

Abraham de Moivre's fo

. Abraham de Moivre
1667-1754
Author of The Doctrine of Chances



4.5. Flow in a sector
F(z)=Uz", n=1

Abraham de Moivre's formula

ei"e=(00s6+isin 6)"=cos (n0)+isin(n0)

Use polar coordinates
z=re'"
F(z)=Ur"cos(n0)+iU r"sin(n0)
Potential and stream function

o=Ur"cos(n0), p=U r"sin(n0)




Complex velocity
w(z)=nUz""'=nU """ =
=(n Ur' 'cosn®0+inU r" 'sinn6le™
Velocity components
u=nUr"""'cosn0

_1 R
ue=—nUr" sinn6

n = 1: uniform flow

n=2:flowina
right-angle corner

n = 3: shown




4.6. Flow around a sharp edge
F(Z)ZCZI/ZZCI"Uzeielz

Potential and streamfunction

cpormcosg, wzCrllzsin%

Complex velocity

dFf 1 4 C  _pp
W(Z)Zd—ZZECZ :27'1/26 —
—2C1/2 e"Ge"e/zz2C1/2(cosg+isin%)ei6
r r
C 0 C . 9
U,= Y COSE » Up= 5 112 Smg



y
Singularity //'?
>
y=0,0=2n




4.7.C

oublet

Source at x=-¢

A

AY

Sink at x=+¢

/]

*

Now lete — 0



Complex potential of source and sink

< <

m m
F(Z)—ﬂ10g<2+€> 2]‘[10g(2_8>
F(Z)_ m IOgZ_I_S_ m logl_I_S/Z

27T z—e 2T 1 —¢l/z

For small ¢/z, expand denominator into series:

(1—e/z) '=14¢lz+...
Plug that into F(z)

F(z)zﬂlog((l -|-€/Z)(1-|-8/Z-|-...))

2T

m €
Flz)]=—1Ilog|14+2=+...
(2)=75—log| 1+2 )




Use series expansion for logarithm near 1

" 2§+...)

F(z)=—1log[1+2%+...
(Z) 27T 5 z z

T 2n

If we take the limit of this as ¢ — 0, the result will
be trivial: F(z) =0

For a non-trivial result, let Iim me=mu

e—0
Then
. W vl X—1y X—1y
Im Flz)]=—= = =
e 50 () z Xty M(x—l—iy)(x—iy) sz—l—y2
X Y
P=U——7, P=—U—F"7
X Ty X Ty



Consider a streamline y = const

2 2
2, 2, U w o\ _ [ M
X Ty —I—wy 21|)) (211))

ety =(2y)

Circle of radius n/(2y) and center at x =0, y = -u/(2y)




A

AY

%y%



0 _ B i (cosO—isin0)

__u

L u,=—— Ccoso
r
r

< .




Doublet of strength patz=z_

F(z)= -

Z—Z,



4.8. Circular cylinder flow

Let uniform flow go past a doublet
— /

F(z)z Uz—l—&

Z

Potential and stream function

F(z)=Ure'"- M.eZ(Ur—l—&)cosﬁ—l—i(Ur—E)sinG
re v v

Potential Stream function

Consider streamline v =0

Ur = uw/r means that this streamline is a circle of
radius a = (W/U)"”



Can rewrite complex potential as
2

F(z)=U z+4

Z

z—w, F(z)-»Uz

Uniform flow dominates the far field
2

z—0, F(Z)—>Ua—

Z

Doublet dominates the flow near the origin



Singularity at origin
Velocity=0

stagnation
point)

Velocity=0

stagnation
point)

Flow symmetry: F(-z) = -F(z)



4.9. Cylinder with circulation

Take cylinder flow, add rotation around the origin

F(z)=U

a’ |, il
Z | logz+C
Z 2 ) Constant to
Vortex at origin ~~ Keepw =0atr=a

Pretty easy to find C, tuck it into the logarithm

1 <
2T[ Oga

Complex velocity

dF | az\ 2 B
=—=U|1 |
v dz \ 22/ 2T z




B l_a_2 _I_lr l_U l—a—2 ~2i0 +zl“ le—ie
.z 21 z |7 | 21t r
W= U(eie_a_ze—ie\ , (I 1 il
\ ]/'2 / | 21 r
[ ) ) \1 .
w=(U l—al—2 cosO+i| U 1+a_2 s1in O 4 2F e’
R U .
Remember that w = (u -iu,)e™
[ 2) [ 2)
u=U 1—< | cosH, u,=—U 1+< |sinf— L
. S




On the surface (r = a),

u,=0, uy=—2Us1n0

Boundary!

I
2Ta

Find stagnation points (velocity = 0, » = a)

I
4dntU a

SIn 0 =

Possibilities:
2 stagnation points on the cylinder
1 stagnation point on the cylinder

0 stagnation points on the cylinder (but maybe
somewhere else in the flow?)



Two stagnation points




No stagnation points on the cylinder

r>a)

I

|

4t Ua

Look for stagnation point (r, 0 ) elsewhere (for

/
\

Cannot
be 0

A

==
/

Must be 0!

2 ) J/

cos 0, =0,

1+

2
a
?/

S

rS
\
\

I

S1n 0, .
S

=0



cos =0 means 0 =m/2 or 6 = 3m/2

( 2
: I
Ul1+5 |sin6,=
\ ]/'S ZTEI/'S
positive / negative
Must be
-1,80 0 =37/2
/ 2 )
I
Ul1+5 |=
\ ]/'S/ ZT[VS

Solve this for r



;o= I i\/ I z_az
4 U 4 U

Two stagnation points
- inside the cylinder (so who cares?)
+ outside the cylinder (good stuff)

9



4.10. Blasius integral laws

* Find potential
* Find velocity components

* Plug velocity into Bernoulli equation to find
pressure on body surface

* |Integrate to find

» Hydrodynamic force on the body
 Hydrodynamic moment on the body

« MUCH simpler with complex potential!



Any contour fully enclosing the body

Body of an arbitrary shape
Surface: streamline v =0

Complex force:
X-1Y

Blasius first law Blasius second law

X—inigﬁwzdz MZEYR ﬁzwzdz
ZCO 2 .

0



Evaluating complex integrals

n!

flx—x,)= Zaxxo,n

This expansion is valld in an interval |x - x | < ox




Evaluating complex integrals
Laurent series (complex variable)

o0

ZZO Zazzo,

n=— —oo

lﬁfc (G—z,) " 'd

This expansion is valid in an annulus where f'is
nolomorphic: R <|z-z | <R,

f R =0, z — isolated singularity 0
Coefficient a , of Laurent series:

residue of fat z,




Cauchy theorem

If complex function f(z) is holomorphic
everywhere inside contour C,

P f(z)dz=

Cauchy residue theorem

If complex function f(z) is holomorphic
everywhere inside contour C, except isolated

singularities,
gﬁ f(z)dz= 2mz a,,




Example
¢ — holomorphic everywhere in a disk of radius r

with center atz=0

2 6
¢’/z — holomorphic everywhere in a disk of radius »
with center at z =0, except at it center

e_Zzllllzlz2
6

7 2

Note.a #0,a ,=0,k=12,. . atz=z —

z, Is a pole of order m




4.11. Force and moment on a circular
cylinder

Complex potential

a (I z
Flz)=U]|zA | log —
(Z) (Z z 2T Oga
Complex velocity / \
2
==V 15
\ 7

Blasius first law

X—iniB¢ w” dz
ZCO



2 2 2 4 . . 2
» .2 2Ua” U'a iUl iUTa I
w=U 2 4 3 2 2

z z nZ TZ 4n°z
0 2 4 1 3 2
Term order in z iUT
Cl_lz T

z = (0 — sole isolated singularity of w?, thus

| _iUT
X—iY=2inD, a_,,=2in ’lT][ =—ipUT
k

X =0 (D'Alembert's paradox)
Y =pUI' (Zhukovsky-Kutta law)

Similar analysis for zw? produces M =0



4.12. Conformal transformations

Helps deal with boundaries

¢=ctin A7

dh

SN

It's only good if the Laplace equation is also
transformed into something nice...



» Consider f— holomorphic function mapping (x,y)
into (¢,n)

* In (x,y) plane, let VZ¢(x,y) = 0

* Then in (§,1) plane, VZp(&,n) =0
(proof: p. 93)

» |Laplace equation is preserved by conformal
mapping

 What happens with complex velocity?

_dF _dF(¢)dt =d—Cw(z;)
dz dC dz dz

Velocity scales during conformal mapping

w(z)



Let's prove that conformal mapping preserves
sources, sinks, etc.

Fzgﬁ u-dl=¢ (u dx+vdy
C C

Circulation of all

point vortices inside
C

\ m=¢ u-dnzgﬁ (udy—vdx
C

Strength of all
sources/sinks inside
C



¢W(Z)d2=
gﬁ U—1iv dx—l—zdy =¢ udx—l—vdy) gﬁ(udy—vdx =
C C C

=1'4+im

Could have proven the same with residue
theorem...

Now consider a conformal mapping (x,y) — (€,n)
F—I—z m ‘ gﬁ w dz—
¢ W —dz—

245 W(C)a’Zz(l“JrimﬂZ



Conformal mapping preserves strength of
sources, sinks, and vortices



C = 0: singularity (let's contain it Nikolai Egorovich
. . Zhukovsky
inside the body) (1847-1921)

“Man will fly using the

d ~ power of his intellect

O rather than the strength
of his arms.”

C==c,

g
C = *c: critical points (angle not preserved)



Critical points of Zhukovsky transform

¢=¢&tin Y,

-C +C

0

C=xc z==cA ==2c
+c

Can prove: 6, — 0, =2 (v, - v,)

A smooth curve passing through € = ¢ will
correspond to a curve with a cusp in z-plane



Example: { = ce"

¢=¢&tin Y,

2
iv C

z=ce +—— =c(e”—|—e_w)=20 COS 'V

ce

Zhukovsky transform recipe. Start with flow
around a cylinder in C-plane, map to something



4.14. Flow around ellipses

Circle in C-plane, radius a > ¢, center at origin

[V
C=ae
' C2 / / 62 ( 62
z=aqe'+—e '=la+—|cosv+ila——|sinV
A \ A \ A
Major semiaxis Minor semiaxis

Parametric equation of an ellipse






Flow past a cylinder

;ﬁ»

H//m\%

> >

. W

F(z)=U




Now consider freestream flow at an angle
Can get this by conformal 7
mapping too (in plane z"

z = ez - rotation) q %

Correspondingly,

Z' = ez



In plane Z'

2
F(z')=U Z’-l-a—,
z
I )
F=Ul|ze "+——|=Ul|ze
\ ze ™

Let's have this flow in C-plane:
F(C)zU( e 4L e

Now recall that
2

Z=C—I—C—

C



Express C in terms of z:
C+c—Cz=0

Plug this into F({) to get F(z)... (skip derivation)



2
F(z)=U|ze " a2 et—e " Z—\/(E) —c”

Uniform flow at angle a approaching an ellipse

with major semiaxis a + ¢*/a and minor semiaxis
2

a- cla




Stagnation points: { =tae™



Stagnation points in z-plane...

2
z=+aet+ 5 o7
a




2
C

a+—
a

z=

2
. C .
cosociz(a——)smoc

a
/ :

X=X|la+—
\ a

2
c | .
yzi(a——)smoc
a

COS X

- forward stagnation point
+ downstream stagnation point

o. = 0: horizontal flow approaching horizontal
ellipse

o = 1/2: vertical flow, horizontal ellipse (or
horizontal flow, vertical ellipse)



4.15. KUitzeerdition and the flat-plate airfoil

Martin Wilhelm Kutta
(1867-1944)



4.15. Zhukovsky-Chaplygin postulate and
the flat-plate airfoil

Sergey Chaplygin
(1869-1942),

Hero of Socialist Labour
(1 February 1941)



4.15. Zhukovsky-Chaplygin postulate and
the flat-plate airfoil

Flow around a sharp edge (section 4.6)...

* At a sharp edge

i e
AN
! ey
‘..',5'_.'-\

i [

OH CRAP...

Who divided by zero?




4.15. Zhukovsky-Chaplygin postulate and
the flat-plate airfoil

Flow around a sharp edge (section 4.6)...

F(Z)ZCZ“2
dZ 221/2

z = 0: singularity

* At a sharp edge, velocity goes to infinity
* This is not the case in experiment, luckily
* Need a fix for theory near sharp edges

* That's not the only problem though...



Herein lies
the problem!



| at the trailing sharp edge!

Smoke visualization of wind tunnel flow past a lifting surface
Alexander Lippisch, 1953



Zhukovsky-Chaplygin postulate:

For bodies with sharp trailing edges at modest
angles of attack to the freestream, the rear
stagnation point will stay at the trailing edge

Dealing with trailing-edge singularity
In modeling real lifting surfaces, trailing edge has
sharp but finite curvature



How to “fix” the flat-plate flow?

¢=¢gtin

Angle of attack



Add circulation...

...to move the
stagnation point to the
trailing edge!



We want to move the rear stagnation point to
z=2cC

That would correspond to € = ¢ in the z-plane

Need to move it there from £ = ce™

For cylinder flow with circulation...
I
47U a

SIn 0, =

If sin © = - sin q,

I'=4nU asino



Recipe for constructing a complex potential for
corrected flat-plate flow (Eq. 4.22b)

* Cylinder flow

e Add circulation " = 4r a U sin o

* Rotate the plane o degrees counterclockwise
» Zhukovsky transform
o« 2?77

* Profit!



Lift on a flat-plate airfoil extending from -2a to 2a

Blasius law for cylinder flow:
Y=pUT
In our case

Y=4npU’asina



Introduce dimensionless lift coefficient
Y
C,= |
| —pU”’I
wing 2 p \

—enord Characteristic length scale
(for wings — chord length)

For our flat plate, /= 4a and

C,=27msino

At small angles of attack, lift coefficient on a flat
plate increases with angle of attack!






4.16. Symmetrical Zhukovsky airfoil

Goal: airfoil with sharp trailing edge and blunt
leading edge

¢=¢&tin Y,

r=a=c(l+eg)

L

! l |
C Y></c
Center:
-m = -&C

-(c+2m) A
small




Leading edge in C-plane: -(c + 2m)

In z-plane, the leading edge is...

z=—c(1+42¢) 1f28=—2c+0(82)~—2c

Chord length / =4c¢

Similarly (more series expansions, linearization)

thickness _
t=3+3ce, §=¥e

Thickness ratio

Maximum thickness occurs at x = -c






Can find ¢ in {-plane from desired / and ¢ in z-
plane: 4

[
e=———~(.77 -
33 [ /

Equation for symmetric Zhukovsky profile in z-

plane
y 2 X \/ x|
—=t——|1-2=N/1—-|2—
1 3¢3( 1) z

At zero angle of attack, stagnation point is at
trailing edge, lift =0

Add angle of attack «...



To satisfy the Zhukovsky/Kutta/whatever
condition...

&= ctin

Need to move this
stagnation point...

S
>

// ...herel!

For a cylinder of radius «, the needed amount of
circulation is (same as for flat plate...)

I'=4ma Usin o



Express radius a in terms of / and ¢..

a=ct+m=c(l+e)= l( 3\5[)

For an angle of attack a, circulation we need to
add is...

I'=4nUasino= IIUZ( \/ 7)s1noc

Lift coefficient for symmetrical Zhukovsky airfoil

CLNZT[(I O.77§)sinoc

t — 0, this reduces to lift coefficient of flat plate
Zhukovsky symmetrical profile has better lift!



4.17. Arc airfoll

Airfoil of zero thickness but finite curvature

Use cosine theorem to  ¢=¢+in A7
getr .
2 2 2
a =r+m —2rmcos %—V 94
¢ e
In z-plane,
z=re +—e =
A
( 2 X 2 y
—|lr+— |cosv+il r—— |sinv
7 \ T




|
~
(\®)
+
)
@)
(\)
+
‘Q
(&

/

2 2 . 2 2 « 2 2 C
rcos vsmn v=x'sin-v—|2c —I——2

| \(
2 2 . 2 2 2 2
r cos"vsin - v=y cos v+| 2c —

\

4)

"

\

4
C
2

.

2 2 2 2 C )
cos"v, y =|r—2 +—|sin"v

2 - 2
COS vSin Vv

2 - 2
COS VSIn V

2 2 2 2 2 2 . 2
x'sin"v—y cos"v=4c cos vsin v

Use cosine theorem:
2 2 2
r-—c C |

Y

SIn V= =|r =

2rm r|l2m 2msmv



y cannotbe .2, _ Y cosiv=1 Y

negative!!l 2m 2m

2 .« 2 2 2 2 2 . 2
X sin"v—y cos v=4c cos vsin v

xzy y21 J =4CZL1 J
2m 2m 2m 2m

3

i - .
x°+ y—l—c(c m) =c’ 4I(C m)
m c m c



o) C

m

X +|ly+c

m

C

m

12
) =024I(C
m

y=0

C

Equation of an arc in the z-plane

&= otin

|




Otto Lilienthal and his glige,r, 1895




] - _ .
x°+ y—l—c(c m) —c’ 4I(C m)
m c m C

Recall that m/c = ¢, linearize (not essential here
but nice)
2 [ 2

—C 4—|——2

.

2

C
y+—
m

x2—|—

Find arc height 7
Since y =2m sin’v,y_ = h=2m

Next have to add circulation to put stagnation
point at the trailing edge (trickier, because

cylinder is moved upward in the C-plane)



Stagnation point needs to rotate by a + tani(m/c)

/4

Angle of attack Vertical

Linearize:
tan''(m/c) = m/c = €,a=c
Amount of circulation to be added:
m

oL+—
C

m .
o+— |=4nU csin

C

I'=4nU asin

Lift coefficient:

7 )
OH‘27/

Again, more lift than flat p

m .
o+— |=2n U csin

C,=2nU csin
c

shift

atel



4. 18. Zhukovsky airfoll

 Know how to create lifting surfaces with:

e Straight chord, finite thickness
« Zero thickness, small finite curvature (camber)

 Both improve lift, compared with flat plate

* Create a lifting surface with both thickness and
camber (Zhukovsky profile)










Maxim Gorky (ANT-20, PS-124) plane, 1935

G

e

et
B

G

fa%‘; ;z%g
. ,e;k.z -
.

-

%mggz &,;ma




Circulation

I'=nUI[1+0. 777)31n(0c+21h)
thick cam
ness ber

Lift coefficient

C,=2m

1—I—O.77§)sin(o¢l 2lh)



Kalinin K-7 (Russia, 1930)




Dornier X flying boat (Germany, 1929)
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